cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098339 Expansion of 1/sqrt(1 - 6x + 17x^2).

Original entry on oeis.org

1, 3, 5, -9, -111, -477, -1051, 1095, 21793, 106947, 276165, -71145, -4712655, -26071965, -76452315, -29748249, 1045547073, 6564746115, 21507513221, 19922192439, -230801512751, -1674387214173, -6072718662555
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Binomial transform of A098336. Second binomial transform of A098332.
Central coefficients of (1 + 3x - 2x^2)^n.

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-6x+17x^2],{x,0,30}],x] (* Harvey P. Dale, Jun 19 2013 *)

Formula

E.g.f.: exp(3x)*BesselI(0, 2*sqrt(-2)*x).
D-finite with recurrence: n*a(n) + 3*(1-2*n)*a(n-1) + 17*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 09 2012