A098358 Multiplication table of the triangular numbers read by antidiagonals.
1, 3, 3, 6, 9, 6, 10, 18, 18, 10, 15, 30, 36, 30, 15, 21, 45, 60, 60, 45, 21, 28, 63, 90, 100, 90, 63, 28, 36, 84, 126, 150, 150, 126, 84, 36, 45, 108, 168, 210, 225, 210, 168, 108, 45, 55, 135, 216, 280, 315, 315, 280, 216, 135, 55, 66, 165, 270, 360, 420, 441, 420, 360
Offset: 0
Examples
Triangle begins: 1; 3, 3; 6, 9, 6; 10, 18, 18, 10; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
a[n_, k_] := Binomial[k + 1, 2]*Binomial[n + 1, 2]; Table[a[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 22 2017 *)
Formula
a(m,n) = m*(m+1)*n*(n+1)/4.
G.f.: x*y / ((1-x)^3 * (1-y)^3). - Ralf Stephan, Oct 27 2004
Comments