A098364 Multiplication table of the digits of the square root of 2 read by antidiagonals.
1, 4, 4, 1, 16, 1, 4, 4, 4, 4, 2, 16, 1, 16, 2, 1, 8, 4, 4, 8, 1, 3, 4, 2, 16, 2, 4, 3, 5, 12, 1, 8, 8, 1, 12, 5, 6, 20, 3, 4, 4, 4, 3, 20, 6, 2, 24, 5, 12, 2, 2, 12, 5, 24, 2, 3, 8, 6, 20, 6, 1, 6, 20, 6, 8, 3, 7, 12, 2, 24, 10, 3, 3, 10, 24, 2, 12, 7, 3, 28, 3, 8, 12, 5, 9, 5, 12, 8, 3, 28, 3
Offset: 1
Examples
Triangle begins: 1; 4,4; 1,16,1; 4,4,4,4; ... Array begins: 1 4 1 4 2 ... 4 16 4 16 8 ... 1 4 1 4 2 ... 4 16 4 16 8 ... 2 8 2 8 4 ... ...
Links
- Michel Marcus, Antidiagonals n = 1..100, flattened
Programs
-
PARI
sqrt2(nn) = {my(r=0, x=2, list = List(), d); for(digits=1, nn, d=0; while((20*r+d)*d <= x, d++); d--; listput(list, d); x=100*(x-(20*r+d)*d); r=10*r+d;); Vec(list);} \\ A002193 lista(nn) = {my(dd = sqrt2(nn)); for (n=1, nn, for (k=1, n, print1(dd[k]*dd[n-k+1], ", ")));} \\ Michel Marcus, Nov 11 2021
Formula
Extensions
Offset changed to 1 and a(34)=1 inserted by Georg Fischer, Nov 02 2021