A098435 Triangle of Salie numbers T(n,k) for negative n,k, n < k.
1, -1, 1, 2, -3, 1, -8, 13, -6, 1, 56, -92, 45, -10, 1, -608, 1000, -493, 115, -15, 1, 9440, -15528, 7662, -1799, 245, -21, 1, -198272, 326144, -160944, 37817, -5180, 462, -28, 1, 5410688, -8900224, 4392080, -1032088, 141465, -12684, 798, -36, 1
Offset: 1
Examples
1; -1, 1; 2, -3, 1; -8, 13, -6, 1; 56, -92, 45, -10, 1;
Links
- D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
Crossrefs
T(-1, k) = (-1)^k*A005439(k-1). Row sums are zero.
Programs
-
Mathematica
rows = 9; A054142 = Table[ PadRight[ Table[ Binomial[2*n-k, k], {k, 0, n}], rows], {n, 0, rows-1}]; inv = Inverse[A054142]; Table[ Take[inv[[n]], n], {n, 1, rows}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Paul Barry *)
Formula
See A065547 for formulas.
Comments