A098447 Triangle T, read by rows, such that diagonal n equals column 0 of T^(n+1), the (n+1)-th matrix power of T.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 9, 1, 1, 5, 16, 32, 24, 1, 1, 6, 25, 78, 150, 79, 1, 1, 7, 36, 155, 532, 1018, 340, 1, 1, 8, 49, 271, 1395, 5802, 10996, 2090, 1, 1, 9, 64, 434, 3036, 21343, 116658, 212434, 20613, 1, 1, 10, 81, 652, 5824, 60209, 661325, 5072504
Offset: 0
Examples
T(7,3) = T(3,0)*T(3,0) + T(3,1)*T(4,1) + T(3,2)*T(5,2) + T(3,3)*T(6,3) = 1*1 + 3*4 + 4*16 + 1*78 = 155. Rows of T begin: [1], [1,1], [1,2,1], [1,3,4,1], [1,4,9,9,1], [1,5,16,32,24,1], [1,6,25,78,150,79,1], [1,7,36,155,532,1018,340,1], [1,8,49,271,1395,5802,10996,2090,1], [1,9,64,434,3036,21343,116658,212434,20613,1],... Matrix square T^2 begins: [1], [2,1], [4,4,1], [9,14,8,1], [24,53,54,18,1], [79,234,376,280,48,1], [340,1291,2976,4034,2196,158,1],... where column 0 is {1,2,4,9,24,79,340,...} and forms diagonal 1 of T. Matrix cube T^3 begins: [1], [3,1], [9,6,1], [32,33,12,1], [150,219,135,27,1], [1018,2023,1944,744,72,1],... where column 0 is {1,3,9,32,150,1018,...} and forms diagonal 2 of T.
Programs
-
PARI
T(n,k)=if(n
Formula
T(n, k) = Sum_{i=0..k} T(k, i)*T(n-k+i-1, i), for 0
Comments