cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098480 Expansion of 1/sqrt((1-x)^2-8x^3).

Original entry on oeis.org

1, 1, 1, 5, 13, 25, 65, 181, 445, 1113, 2945, 7685, 19821, 51865, 136513, 358229, 942109, 2487385, 6573825, 17387045, 46066253, 122213913, 324512833, 862511605, 2294698109, 6109933657, 16280439937, 43411979845, 115835462445
Offset: 0

Views

Author

Paul Barry, Sep 10 2004

Keywords

Comments

1/sqrt((1-x)^2-4rx^3) expands to sum{k=0..floor(n/2), binomial(n-k,k)binomial(n-2k,k)r^k}

Crossrefs

Programs

  • Mathematica
    Array[Sum[Binomial[# - k, k] Binomial[# - 2 k, k] 2^k, {k, 0, #/2}] &, 29, 0] (* Michael De Vlieger, Jul 16 2019 *)

Formula

a(n)=sum{k=0..floor(n/2), binomial(n-k, k)binomial(n-2k, k)2^k}. D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +(n-1)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Nov 10 2014