cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098483 Expansion of 1/sqrt((1-x)^2-8x^4).

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 25, 41, 85, 205, 473, 985, 2021, 4365, 9785, 21673, 46965, 101581, 222745, 492665, 1087237, 2388749, 5251065, 11587529, 25633045, 56697933, 125345113, 277283353, 614212133, 1361824525, 3020426681, 6700678377
Offset: 0

Views

Author

Paul Barry, Sep 10 2004

Keywords

Comments

1/sqrt((1-x)^2-4rx^4) expands to sum{k=0..floor(n/2), binomial(n-2k,k)binomial(n-3k,k)r^k}

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-2*k, k)*binomial(n-3*k, k)*2^k) \\ Michel Marcus, Jul 24 2013

Formula

a(n)=sum{k=0..floor(n/2), binomial(n-2k, k)binomial(n-3k, k)2^k}.
D-finite with recurrence: n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+8*sqrt(2)))^n / (sqrt(33+10*sqrt(2)-sqrt(265+596*sqrt(2))) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Jun 23 2014