cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098498 Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the edge.

Original entry on oeis.org

1, 5, 23, 60, 110, 172, 248, 338, 442, 560, 692, 838, 998, 1172, 1360, 1562, 1778, 2008, 2252, 2510, 2782, 3068, 3368, 3682, 4010, 4352, 4708, 5078, 5462, 5860, 6272, 6698, 7138, 7592, 8060, 8542, 9038, 9548, 10072, 10610, 11162, 11728, 12308, 12902, 13510
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5 and a(2)=23.
		

Crossrefs

See A018836 (unbounded), A098499 (diagonal halfplane), A098500 (quadrant), A098501 (octant).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 5, 23, 60, 110, 172, 248}, 50] (* Paolo Xausa, Jul 17 2024 *)

Formula

a(n) = 7*n^2 - n + 2, for n>3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>6. G.f.: -(2*x^6 -x^5 -6*x^4 +5*x^3 +11*x^2 +2*x +1) / (x -1)^3. - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A098499 Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.

Original entry on oeis.org

1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
		

Crossrefs

Equals A098498(n) - A052938(n-4), n>3.
See A018836 (unbounded), A098498 (halfplane), A098500 (quadrant), A098501 (octant).

Formula

a(n) = (1/4) [28n^2 - 6n + 9 + 3(-1)^n], for n>3.
G.f.: -(3*x^7-x^6-8*x^5+4*x^4+13*x^3+13*x^2+3*x+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A098500 Number of squares on infinite quarter chessboard at <=n knight moves from the corner.

Original entry on oeis.org

1, 3, 12, 32, 59, 91, 130, 176, 229, 289, 356, 430, 511, 599, 694, 796, 905, 1021, 1144, 1274, 1411, 1555, 1706, 1864, 2029, 2201, 2380, 2566, 2759, 2959, 3166, 3380, 3601, 3829, 4064, 4306, 4555, 4811, 5074, 5344, 5621, 5905, 6196, 6494, 6799, 7111, 7430
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			3 squares are reachable after 1 move, from these you can reach 8 new squares more, so a(1)=3, a(2)=12.
		

Crossrefs

First differences are in A047883.
See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098501 (octant).

Formula

a(n) = (1/2) * (7*n^2 + n + 2), for n>3.
G.f.: -(2*x^6-2*x^5-4*x^4+4*x^3+6*x^2+1) / (x-1)^3. - Colin Barker, Jul 15 2013

Extensions

More terms from Colin Barker, Jul 15 2013
Showing 1-3 of 3 results.