cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A018836 Number of squares on infinite chessboard at <= n knight's moves from a fixed square.

Original entry on oeis.org

1, 9, 41, 109, 205, 325, 473, 649, 853, 1085, 1345, 1633, 1949, 2293, 2665, 3065, 3493, 3949, 4433, 4945, 5485, 6053, 6649, 7273, 7925, 8605, 9313, 10049, 10813, 11605, 12425, 13273, 14149, 15053, 15985, 16945, 17933, 18949, 19993, 21065, 22165
Offset: 0

Views

Author

Keywords

Comments

Apparently also the number of distinct squares reachable by the (1,3)-leaper in at most n moves. - R. J. Mathar, Jan 05 2018

Crossrefs

Partial sums of A018842. Cf. A098498 (half-infinite board), A001844 (1,1)-leaper, A297740 (2,3)-leaper, A297741 (3,4)-leaper.

Programs

  • Maple
    (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^3; seq(coeff(series(%, x, n+1), x, n), n=0..50);
  • Mathematica
    Table[1-6 n+14 n^2+4 Sign[n(n-1)(n-3)], {n, 0, 50}] (* Zak Seidov *)
    Join[{1,9,41,109},LinearRecurrence[{3,-3,1},{205,325,473},50]] (* Harvey P. Dale, Aug 16 2011 *)
    CoefficientList[Series[(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1 + x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 26 2012 *)

Formula

G.f.: (1+5*x+12*x^2-8*x^4+4*x^5)*(1+x)/(1-x)^3;
a(n) = 1-6*n+14*n^2+4*sign(n*(n-1)*(n-3)). - Zak Seidov, Mar 01 2005

A098502 a(n) = 16*n - 4.

Original entry on oeis.org

12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, 572, 588, 604, 620, 636, 652, 668, 684, 700, 716, 732, 748, 764, 780, 796, 812, 828, 844
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

Crossrefs

Programs

Formula

G.f.: 4*x*(3+x)/(1-x)^2. - Colin Barker, Jan 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - Amiram Eldar, Sep 01 2024
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = 4*A004767(n-1) = 2*A017137(n-1) = A017113(2*n-1). (End)

A098499 Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.

Original entry on oeis.org

1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
		

Crossrefs

Equals A098498(n) - A052938(n-4), n>3.
See A018836 (unbounded), A098498 (halfplane), A098500 (quadrant), A098501 (octant).

Formula

a(n) = (1/4) [28n^2 - 6n + 9 + 3(-1)^n], for n>3.
G.f.: -(3*x^7-x^6-8*x^5+4*x^4+13*x^3+13*x^2+3*x+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A098500 Number of squares on infinite quarter chessboard at <=n knight moves from the corner.

Original entry on oeis.org

1, 3, 12, 32, 59, 91, 130, 176, 229, 289, 356, 430, 511, 599, 694, 796, 905, 1021, 1144, 1274, 1411, 1555, 1706, 1864, 2029, 2201, 2380, 2566, 2759, 2959, 3166, 3380, 3601, 3829, 4064, 4306, 4555, 4811, 5074, 5344, 5621, 5905, 6196, 6494, 6799, 7111, 7430
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			3 squares are reachable after 1 move, from these you can reach 8 new squares more, so a(1)=3, a(2)=12.
		

Crossrefs

First differences are in A047883.
See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098501 (octant).

Formula

a(n) = (1/2) * (7*n^2 + n + 2), for n>3.
G.f.: -(2*x^6-2*x^5-4*x^4+4*x^3+6*x^2+1) / (x-1)^3. - Colin Barker, Jul 15 2013

Extensions

More terms from Colin Barker, Jul 15 2013

A098501 Number of squares on infinite octant of chessboard at <=n knight moves from the corner. The octant includes the diagonal.

Original entry on oeis.org

1, 2, 5, 13, 31, 49, 70, 93, 121, 151, 186, 223, 265, 309, 358, 409, 465, 523, 586, 651, 721, 793, 870, 949, 1033, 1119, 1210, 1303, 1401, 1501, 1606, 1713, 1825, 1939, 2058, 2179, 2305, 2433, 2566, 2701, 2841, 2983, 3130, 3279, 3433, 3589, 3750, 3913, 4081
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			2 squares are reachable after 1 move, from these you can reach 3 new squares more, so a(1)=2, a(2)=5.
		

Crossrefs

See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098500 (quadrant).

Formula

a(n) = (1/8) * [14n^2 + 8n + 5 + 3(-1)^n], for n>4.
G.f.: -(2*x^8+2*x^7-7*x^6-5*x^5+8*x^4+5*x^3+x^2+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A065450 Make an infinite chessboard from the squares in the first quadrant; sequence gives number of squares a knight can reach in n moves starting at the origin.

Original entry on oeis.org

1, 2, 10, 22, 37, 54, 76, 100, 129, 160, 196, 234, 277, 322, 372, 424, 481, 540, 604, 670, 741, 814, 892, 972, 1057, 1144, 1236, 1330, 1429, 1530, 1636, 1744, 1857, 1972, 2092, 2214, 2341, 2470, 2604, 2740, 2881, 3024, 3172, 3322, 3477, 3634, 3796, 3960
Offset: 0

Views

Author

Bodo Zinser, Nov 18 2001

Keywords

Comments

The first conjecture is true: Partial sums of A047356 = b(n) = (14*(n*(n+1)) + 2*n + 5 + 3*(-1)^n )/8, since A047356(n)=(14*n+1+3*(-1)^n)/4. And b(n) has g.f. (4*x^2 + 2*x + 1)/(-x^4 + 2*x^3 - 2*x + 1). The difference a(n) - b(n) = 0,2,2,0,0,0,0,0,0..., which has g.f. 2*x^2 + 2*x. Then (4*x^2 + 2*x + 1)/(-x^4 + 2*x^3 - 2*x + 1) + 2*x^2 + 2*x = (-2*x^6 + 2*x^5 + 4*x^4 - 4*x^3 + 2*x^2 + 4*x + 1)/(-x^4 + 2*x^3 - 2*x + 1). - Vim Wenders, Apr 16 2008

Crossrefs

Cf. A098498.

Formula

Conjectures: G.f.: [1+6x^2+4x^3-4x^4-2x^5+2x^6]/[(1+x)*(1-x)^3]. For n>3, partial sums of A047356. - Ralf Stephan, Mar 06 2004
The second conjecture "For n>3, partial sums of A047356" is also true. From the last possible move, we can either move back to the second last possible move or to b(n)=A047883(n) new squares. So a(n) = a(n-2)+b(n). For n>6, b(n)=7(n-1)+4=A017029(n-1). But a number of the form 7n+4 is naturally the sum of two consecutive terms in A047356 (4=1+3,11=3+8,18=8+10, ...). The conjecture follows. - Vim Wenders, Apr 12 2008

Extensions

More terms from Don Reble, Nov 28 2001
Showing 1-6 of 6 results.