cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A098498 Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the edge.

Original entry on oeis.org

1, 5, 23, 60, 110, 172, 248, 338, 442, 560, 692, 838, 998, 1172, 1360, 1562, 1778, 2008, 2252, 2510, 2782, 3068, 3368, 3682, 4010, 4352, 4708, 5078, 5462, 5860, 6272, 6698, 7138, 7592, 8060, 8542, 9038, 9548, 10072, 10610, 11162, 11728, 12308, 12902, 13510
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5 and a(2)=23.
		

Crossrefs

See A018836 (unbounded), A098499 (diagonal halfplane), A098500 (quadrant), A098501 (octant).

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 5, 23, 60, 110, 172, 248}, 50] (* Paolo Xausa, Jul 17 2024 *)

Formula

a(n) = 7*n^2 - n + 2, for n>3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>6. G.f.: -(2*x^6 -x^5 -6*x^4 +5*x^3 +11*x^2 +2*x +1) / (x -1)^3. - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A098499 Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.

Original entry on oeis.org

1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
		

Crossrefs

Equals A098498(n) - A052938(n-4), n>3.
See A018836 (unbounded), A098498 (halfplane), A098500 (quadrant), A098501 (octant).

Formula

a(n) = (1/4) [28n^2 - 6n + 9 + 3(-1)^n], for n>3.
G.f.: -(3*x^7-x^6-8*x^5+4*x^4+13*x^3+13*x^2+3*x+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A098500 Number of squares on infinite quarter chessboard at <=n knight moves from the corner.

Original entry on oeis.org

1, 3, 12, 32, 59, 91, 130, 176, 229, 289, 356, 430, 511, 599, 694, 796, 905, 1021, 1144, 1274, 1411, 1555, 1706, 1864, 2029, 2201, 2380, 2566, 2759, 2959, 3166, 3380, 3601, 3829, 4064, 4306, 4555, 4811, 5074, 5344, 5621, 5905, 6196, 6494, 6799, 7111, 7430
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			3 squares are reachable after 1 move, from these you can reach 8 new squares more, so a(1)=3, a(2)=12.
		

Crossrefs

First differences are in A047883.
See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098501 (octant).

Formula

a(n) = (1/2) * (7*n^2 + n + 2), for n>3.
G.f.: -(2*x^6-2*x^5-4*x^4+4*x^3+6*x^2+1) / (x-1)^3. - Colin Barker, Jul 15 2013

Extensions

More terms from Colin Barker, Jul 15 2013

A297740 The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.

Original entry on oeis.org

1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425, 3033, 3709, 4453, 5265, 6145, 7093, 8109, 9193, 10345, 11565, 12853, 14209, 15633, 17125, 18685, 20313, 22009, 23773, 25605, 27505, 29473, 31509, 33613, 35785, 38025, 40333, 42709, 45153, 47665, 50245, 52893
Offset: 0

Views

Author

R. J. Mathar, Jan 05 2018

Keywords

Crossrefs

Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297741 (3,4)-leaper.
Partial sums of A018839.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425}, 50] (* Paolo Xausa, Mar 17 2024 *)
  • PARI
    Vec((1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Jan 07 2018

Formula

a(n) = 34*n^2 + 30*n + 9 for n >= 6.
From Colin Barker, Jan 05 2018: (Start)
G.f.: (1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9. (End)

A018842 Number of squares on infinite chessboard at n knight's moves from center.

Original entry on oeis.org

1, 8, 32, 68, 96, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A018836 (partial sums), A038522.

Programs

  • Maple
    (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2; seq(coeff(series(%, x, n+1), x, n), n=0..50);
  • Mathematica
    CoefficientList[Series[(1+5x+12x^2-8x^4+4x^5)(1+x)/(1-x)^2, {x,0,50}], x] (* or *) Join[{1,8,32,68,96},LinearRecurrence[{2,-1},{120,148},46]] (* Harvey P. Dale, Jul 05 2011 *)

Formula

a(n) = 28*n-20, n >= 5.
G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2.

Extensions

Formula corrected by Jean Drabbe, Mar 11 2013

A098501 Number of squares on infinite octant of chessboard at <=n knight moves from the corner. The octant includes the diagonal.

Original entry on oeis.org

1, 2, 5, 13, 31, 49, 70, 93, 121, 151, 186, 223, 265, 309, 358, 409, 465, 523, 586, 651, 721, 793, 870, 949, 1033, 1119, 1210, 1303, 1401, 1501, 1606, 1713, 1825, 1939, 2058, 2179, 2305, 2433, 2566, 2701, 2841, 2983, 3130, 3279, 3433, 3589, 3750, 3913, 4081
Offset: 0

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Examples

			2 squares are reachable after 1 move, from these you can reach 3 new squares more, so a(1)=2, a(2)=5.
		

Crossrefs

See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098500 (quadrant).

Formula

a(n) = (1/8) * [14n^2 + 8n + 5 + 3(-1)^n], for n>4.
G.f.: -(2*x^8+2*x^7-7*x^6-5*x^5+8*x^4+5*x^3+x^2+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A297741 The number of distinct positions on an infinite chessboard reachable by the (3,4)-leaper in <= n moves.

Original entry on oeis.org

1, 9, 41, 129, 321, 681, 1289, 2121, 3081, 4121, 5233, 6445, 7777, 9233, 10813, 12517, 14345, 16297, 18373, 20573, 22897, 25345, 27917, 30613, 33433, 36377, 39445, 42637, 45953, 49393, 52957, 56645, 60457, 64393, 68453, 72637, 76945, 81377, 85933, 90613, 95417
Offset: 0

Views

Author

R. J. Mathar, Jan 05 2018

Keywords

Crossrefs

Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297740 (2,3)-leaper.

Formula

Conjecture: a(n) = 62*n^2 + 30*n - 55 for n >= 10.
Conjectures from Colin Barker, Jan 06 2018: (Start)
G.f.: (1 + 6*x + 17*x^2 + 32*x^3 + 48*x^4 + 64*x^5 + 80*x^6 - 24*x^7 - 96*x^8 - 48*x^9 - 8*x^10 + 28*x^11 + 20*x^12 + 4*x^13) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>13.
(End)

A118312 Number of squares on infinite chessboard that a knight can reach in n moves from a fixed square.

Original entry on oeis.org

1, 8, 33, 76, 129, 196, 277, 372, 481, 604, 741, 892, 1057, 1236, 1429, 1636, 1857, 2092, 2341, 2604, 2881, 3172, 3477, 3796, 4129, 4476, 4837, 5212, 5601, 6004, 6421, 6852, 7297, 7756, 8229, 8716, 9217, 9732, 10261, 10804, 11361, 11932, 12517, 13116, 13729, 14356, 14997, 15652
Offset: 0

Views

Author

Anton Chupin (chupin(AT)icmm.ru), May 14 2006

Keywords

Comments

Related to A018842: a(n) = A018842(n) + A018842(n-2) + A018842(n-4) + ... .

Examples

			a(2)=33 because knight in 2 moves from square (0,0) can reach one of the following squares: {{0,0}, {-4,-2}, {-4,0}, {-4,2}, {-3,-3}, {-3,-1}, {-3,1}, {-3,3}, {-2,-4}, {-2,0}, {-2,4}, {-1,-3}, {-1,-1}, {-1,1}, {-1,3}, {0,-4}, {0,-2}, {0,2}, {0,4}, {1,-3}, {1,-1}, {1,1}, {1,3}, {2,-4}, {2,0}, {2,4}, {3,-3}, {3,-1}, {3,1}, {3,3}, {4,-2}, {4,0}, {4,2}}.
		

References

  • M. Petkovic, Mathematics and Chess, Dover Publications (2003), Problem 3.11.

Crossrefs

Cf. A005892, A018842 (squares in EXACTLY n moves), A018836 (squares in <=n moves).

Programs

  • Magma
    I:=[1, 8, 33, 76, 129, 196, 277]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 09 2012
    
  • Mathematica
    Table[ -3 + 4*n + 7*n^2 + 4*Sign[(n - 2)(n - 1)], {n, 0, 100}]
    CoefficientList[Series[(1+5*x+12*x^2-8*x^4+4*x^5)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 09 2012 *)
    Join[{1,8,33},LinearRecurrence[{3,-3,1},{76,129,196},50]] (* Harvey P. Dale, Dec 05 2014 *)
  • PARI
    a(n)=7*n^2 + 4*n - 3 + 4*sign((n-2)*(n-1)) \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = -3 + 4*n + 7*n^2 + 4*sign((n-2)*(n-1)).
G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 09 2012
For n >= 3, a(n) = A005892(n).
E.g.f.: exp(x)*(1 + 11*x + 7*x^2) - 2*x*(x + 2). - Stefano Spezia, Jul 27 2022

Extensions

Link updated by Tristan Miller, Jun 13 2013
Showing 1-8 of 8 results.