A098498
Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the edge.
Original entry on oeis.org
1, 5, 23, 60, 110, 172, 248, 338, 442, 560, 692, 838, 998, 1172, 1360, 1562, 1778, 2008, 2252, 2510, 2782, 3068, 3368, 3682, 4010, 4352, 4708, 5078, 5462, 5860, 6272, 6698, 7138, 7592, 8060, 8542, 9038, 9548, 10072, 10610, 11162, 11728, 12308, 12902, 13510
Offset: 0
5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5 and a(2)=23.
-
LinearRecurrence[{3, -3, 1}, {1, 5, 23, 60, 110, 172, 248}, 50] (* Paolo Xausa, Jul 17 2024 *)
A098499
Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.
Original entry on oeis.org
1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
Offset: 0
5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
A098500
Number of squares on infinite quarter chessboard at <=n knight moves from the corner.
Original entry on oeis.org
1, 3, 12, 32, 59, 91, 130, 176, 229, 289, 356, 430, 511, 599, 694, 796, 905, 1021, 1144, 1274, 1411, 1555, 1706, 1864, 2029, 2201, 2380, 2566, 2759, 2959, 3166, 3380, 3601, 3829, 4064, 4306, 4555, 4811, 5074, 5344, 5621, 5905, 6196, 6494, 6799, 7111, 7430
Offset: 0
3 squares are reachable after 1 move, from these you can reach 8 new squares more, so a(1)=3, a(2)=12.
A297740
The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.
Original entry on oeis.org
1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425, 3033, 3709, 4453, 5265, 6145, 7093, 8109, 9193, 10345, 11565, 12853, 14209, 15633, 17125, 18685, 20313, 22009, 23773, 25605, 27505, 29473, 31509, 33613, 35785, 38025, 40333, 42709, 45153, 47665, 50245, 52893
Offset: 0
-
LinearRecurrence[{3, -3, 1}, {1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425}, 50] (* Paolo Xausa, Mar 17 2024 *)
-
Vec((1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Jan 07 2018
A018842
Number of squares on infinite chessboard at n knight's moves from center.
Original entry on oeis.org
1, 8, 32, 68, 96, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156
Offset: 0
- Moon Duchin, Counting in Groups: Fine Asymptotic Geometry, Notices of the AMS 63.8 (2016), pp. 871-974. See p. 873.
- Mordechai Katzman, Knight's moves on an infinite board
- M. Katzman, Counting Monomials, J. Alg. Comb. 22 (2005) 331-341.
- A. M. Miller and D. L. Farnsworth, Counting the Number of Squares Reachable in k Knight's Moves, Open Journal of Discrete Mathematics, 2013, 3, 151-154.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2; seq(coeff(series(%, x, n+1), x, n), n=0..50);
-
CoefficientList[Series[(1+5x+12x^2-8x^4+4x^5)(1+x)/(1-x)^2, {x,0,50}], x] (* or *) Join[{1,8,32,68,96},LinearRecurrence[{2,-1},{120,148},46]] (* Harvey P. Dale, Jul 05 2011 *)
A098501
Number of squares on infinite octant of chessboard at <=n knight moves from the corner. The octant includes the diagonal.
Original entry on oeis.org
1, 2, 5, 13, 31, 49, 70, 93, 121, 151, 186, 223, 265, 309, 358, 409, 465, 523, 586, 651, 721, 793, 870, 949, 1033, 1119, 1210, 1303, 1401, 1501, 1606, 1713, 1825, 1939, 2058, 2179, 2305, 2433, 2566, 2701, 2841, 2983, 3130, 3279, 3433, 3589, 3750, 3913, 4081
Offset: 0
2 squares are reachable after 1 move, from these you can reach 3 new squares more, so a(1)=2, a(2)=5.
A297741
The number of distinct positions on an infinite chessboard reachable by the (3,4)-leaper in <= n moves.
Original entry on oeis.org
1, 9, 41, 129, 321, 681, 1289, 2121, 3081, 4121, 5233, 6445, 7777, 9233, 10813, 12517, 14345, 16297, 18373, 20573, 22897, 25345, 27917, 30613, 33433, 36377, 39445, 42637, 45953, 49393, 52957, 56645, 60457, 64393, 68453, 72637, 76945, 81377, 85933, 90613, 95417
Offset: 0
A118312
Number of squares on infinite chessboard that a knight can reach in n moves from a fixed square.
Original entry on oeis.org
1, 8, 33, 76, 129, 196, 277, 372, 481, 604, 741, 892, 1057, 1236, 1429, 1636, 1857, 2092, 2341, 2604, 2881, 3172, 3477, 3796, 4129, 4476, 4837, 5212, 5601, 6004, 6421, 6852, 7297, 7756, 8229, 8716, 9217, 9732, 10261, 10804, 11361, 11932, 12517, 13116, 13729, 14356, 14997, 15652
Offset: 0
Anton Chupin (chupin(AT)icmm.ru), May 14 2006
a(2)=33 because knight in 2 moves from square (0,0) can reach one of the following squares: {{0,0}, {-4,-2}, {-4,0}, {-4,2}, {-3,-3}, {-3,-1}, {-3,1}, {-3,3}, {-2,-4}, {-2,0}, {-2,4}, {-1,-3}, {-1,-1}, {-1,1}, {-1,3}, {0,-4}, {0,-2}, {0,2}, {0,4}, {1,-3}, {1,-1}, {1,1}, {1,3}, {2,-4}, {2,0}, {2,4}, {3,-3}, {3,-1}, {3,1}, {3,3}, {4,-2}, {4,0}, {4,2}}.
- M. Petkovic, Mathematics and Chess, Dover Publications (2003), Problem 3.11.
-
I:=[1, 8, 33, 76, 129, 196, 277]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 09 2012
-
Table[ -3 + 4*n + 7*n^2 + 4*Sign[(n - 2)(n - 1)], {n, 0, 100}]
CoefficientList[Series[(1+5*x+12*x^2-8*x^4+4*x^5)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 09 2012 *)
Join[{1,8,33},LinearRecurrence[{3,-3,1},{76,129,196},50]] (* Harvey P. Dale, Dec 05 2014 *)
-
a(n)=7*n^2 + 4*n - 3 + 4*sign((n-2)*(n-1)) \\ Charles R Greathouse IV, Feb 09 2017
Showing 1-8 of 8 results.
Comments