cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A018836 Number of squares on infinite chessboard at <= n knight's moves from a fixed square.

Original entry on oeis.org

1, 9, 41, 109, 205, 325, 473, 649, 853, 1085, 1345, 1633, 1949, 2293, 2665, 3065, 3493, 3949, 4433, 4945, 5485, 6053, 6649, 7273, 7925, 8605, 9313, 10049, 10813, 11605, 12425, 13273, 14149, 15053, 15985, 16945, 17933, 18949, 19993, 21065, 22165
Offset: 0

Views

Author

Keywords

Comments

Apparently also the number of distinct squares reachable by the (1,3)-leaper in at most n moves. - R. J. Mathar, Jan 05 2018

Crossrefs

Partial sums of A018842. Cf. A098498 (half-infinite board), A001844 (1,1)-leaper, A297740 (2,3)-leaper, A297741 (3,4)-leaper.

Programs

  • Maple
    (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^3; seq(coeff(series(%, x, n+1), x, n), n=0..50);
  • Mathematica
    Table[1-6 n+14 n^2+4 Sign[n(n-1)(n-3)], {n, 0, 50}] (* Zak Seidov *)
    Join[{1,9,41,109},LinearRecurrence[{3,-3,1},{205,325,473},50]] (* Harvey P. Dale, Aug 16 2011 *)
    CoefficientList[Series[(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1 + x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 26 2012 *)

Formula

G.f.: (1+5*x+12*x^2-8*x^4+4*x^5)*(1+x)/(1-x)^3;
a(n) = 1-6*n+14*n^2+4*sign(n*(n-1)*(n-3)). - Zak Seidov, Mar 01 2005

A018839 Squares on infinite chessboard at n moves from center using a {2,3} fairy knight.

Original entry on oeis.org

1, 8, 32, 88, 192, 304, 372, 416, 472, 540, 608, 676, 744, 812, 880, 948, 1016, 1084, 1152, 1220, 1288, 1356, 1424, 1492, 1560, 1628, 1696, 1764, 1832, 1900, 1968, 2036, 2104, 2172, 2240, 2308, 2376, 2444, 2512, 2580, 2648, 2716, 2784, 2852, 2920, 2988
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A297740 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[(x + 1) (12 x^8 - 24 x^6 - 20 x^5 + 28 x^4 + 20 x^3 + 12 x^2 + 5*x + 1)/(x - 1)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 16 2013 *)

Formula

For n >= 8, a(n) = 68n - 72. - David W. Wilson
G.f.: (x+1)*(12*x^8 - 24*x^6 - 20*x^5 + 28*x^4 + 20*x^3 + 12*x^2 + 5*x + 1)/(x-1)^2. - Colin Barker, Oct 04 2012

A297741 The number of distinct positions on an infinite chessboard reachable by the (3,4)-leaper in <= n moves.

Original entry on oeis.org

1, 9, 41, 129, 321, 681, 1289, 2121, 3081, 4121, 5233, 6445, 7777, 9233, 10813, 12517, 14345, 16297, 18373, 20573, 22897, 25345, 27917, 30613, 33433, 36377, 39445, 42637, 45953, 49393, 52957, 56645, 60457, 64393, 68453, 72637, 76945, 81377, 85933, 90613, 95417
Offset: 0

Views

Author

R. J. Mathar, Jan 05 2018

Keywords

Crossrefs

Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297740 (2,3)-leaper.

Formula

Conjecture: a(n) = 62*n^2 + 30*n - 55 for n >= 10.
Conjectures from Colin Barker, Jan 06 2018: (Start)
G.f.: (1 + 6*x + 17*x^2 + 32*x^3 + 48*x^4 + 64*x^5 + 80*x^6 - 24*x^7 - 96*x^8 - 48*x^9 - 8*x^10 + 28*x^11 + 20*x^12 + 4*x^13) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>13.
(End)
Showing 1-3 of 3 results.