Vim Wenders has authored 2 sequences.
A116944
a(1) = 1; for n>1, a(n) = (a(n-1)+1)^n.
Original entry on oeis.org
1, 4, 125, 252047376, 1017210679182495207444253709079169646680657
Offset: 1
-
RecurrenceTable[{a[1]==1,a[n]==(a[n-1]+1)^n},a,{n,6}] (* Harvey P. Dale, Jan 17 2012 *)
A090390
Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.
Original entry on oeis.org
1, 1, 9, 49, 289, 1681, 9801, 57121, 332929, 1940449, 11309769, 65918161, 384199201, 2239277041, 13051463049, 76069501249, 443365544449, 2584123765441, 15061377048201, 87784138523761, 511643454094369, 2982076586042449, 17380816062160329, 101302819786919521, 590436102659356801
Offset: 0
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.
-
a090390 n = a090390_list !! n
a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $
tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list
-- Reinhard Zumkeller, Aug 17 2013
-
[Evaluate(DicksonFirst(n,-1),2)^2/4: n in [0..40]]; // G. C. Greubel, Aug 21 2022
-
a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 17 2013
-
CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)),{x, 0, 30}], x] (* Harvey P. Dale, May 20 2012 *)
LinearRecurrence[{5,5,-1}, {1,1,9}, 30] (* Harvey P. Dale, May 20 2012 *)
Table[(ChebyshevT[n,3]+(-1)^n)/2, {n,0,30}] (* Eric W. Weisstein, Apr 17 2018 *)
(LucasL[Range[0, 40], 2]/2)^2 (* G. C. Greubel, Aug 21 2022 *)
-
a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n),n)
-
a(n)=if(n<0,0,([1,2,2;2,1,2;2,2,3]^n)[1,1])
-
Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
-
use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20;$i++) { $p = $p->multiply($a); $p->print(); }
-
[lucas_number2(n,2,-1)^2/4 for n in (0..40)] # G. C. Greubel, Aug 21 2022
Comments