cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001541 a(0) = 1, a(1) = 3; for n > 1, a(n) = 6*a(n-1) - a(n-2).

Original entry on oeis.org

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, 3880899, 22619537, 131836323, 768398401, 4478554083, 26102926097, 152139002499, 886731088897, 5168247530883, 30122754096401, 175568277047523, 1023286908188737, 5964153172084899, 34761632124320657
Offset: 0

Views

Author

Keywords

Comments

Chebyshev polynomials of the first kind evaluated at 3.
This sequence gives the values of x in solutions of the Diophantine equation x^2 - 8*y^2 = 1, the corresponding values of y are in A001109. For n > 0, the ratios a(n)/A001090(n) may be obtained as convergents to sqrt(8): either successive convergents of [3; -6] or odd convergents of [2; 1, 4]. - Lekraj Beedassy, Sep 09 2003 [edited by Jon E. Schoenfield, May 04 2014]
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r = sqrt(8). - Benoit Cloitre, Feb 14 2004
Appears to give all solutions greater than 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r = sqrt(2). - Benoit Cloitre, Feb 24 2004
This sequence give numbers n such that (n-1)*(n+1)/2 is a perfect square. Remark: (i-1)*(i+1)/2 = (i^2-1)/2 = -1 = i^2 with i = sqrt(-1) so i is also in the sequence. - Pierre CAMI, Apr 20 2005
a(n) is prime for n = {1, 2, 4, 8}. Prime a(n) are {3, 17, 577, 665857}, which belong to A001601(n). a(2k-1) is divisible by a(1) = 3. a(4k-2) is divisible by a(2) = 17. a(8k-4) is divisible by a(4) = 577. a(16k-8) is divisible by a(8) = 665857. - Alexander Adamchuk, Nov 24 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators=A001541 and denominators=A001542. - Clark Kimberling, Aug 26 2008
Also index of sequence A082532 for which A082532(n) = 1. - Carmine Suriano, Sep 07 2010
Numbers n such that sigma(n-1) and sigma(n+1) are both odd numbers. - Juri-Stepan Gerasimov, Mar 28 2011
Also, numbers such that floor(a(n)^2/2) is a square: base 2 analog of A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001075. - M. F. Hasler, Jan 15 2012
Numbers such that 2n^2 - 2 is a square. Also integer square roots of the expression 2*n^2 + 1, at values of n given by A001542. Also see A228405 regarding 2n^2 -+ 2^k generally for k >= 0. - Richard R. Forberg, Aug 20 2013
Values of x (or y) in the solutions to x^2 - 6xy + y^2 + 8 = 0. - Colin Barker, Feb 04 2014
Panda and Ray call the numbers in this sequence the Lucas-balancing numbers C_n (see references and links).
Partial sums of X or X+1 of Pythagorean triples (X,X+1,Z). - Peter M. Chema, Feb 03 2017
a(n)/A001542(n) is the closest rational approximation to sqrt(2) with a numerator not larger than a(n), and 2*A001542(n)/a(n) is the closest rational approximation to sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations to sqrt(2) with restricted numerator or denominator. a(n)/A001542(n) > sqrt(2) > 2*A001542(n)/a(n). - A.H.M. Smeets, May 28 2017
x = a(n), y = A001542(n) are solutions of the Diophantine equation x^2 - 2y^2 = 1 (Pell equation). x = 2*A001542(n), y = a(n) are solutions of the Diophantine equation x^2 - 2y^2 = -2. Both together give the set of fractional approximations for sqrt(2) obtained from limited fractions obtained from continued fraction representation to sqrt(2). - A.H.M. Smeets, Jun 22 2017
a(n) is the radius of the n-th circle among the sequence of circles generated as follows: Starting with a unit circle centered at the origin, every subsequent circle touches the previous circle as well as the two limbs of hyperbola x^2 - y^2 = 1, and lies in the region y > 0. - Kaushal Agrawal, Nov 10 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0Michael Somos, Jun 26 2022

Examples

			99^2 + 99^2 = 140^2 + 2. - _Carmine Suriano_, Jan 05 2015
G.f. = 1 + 3*x + 17*x^2 + 99*x^3 + 577*x^4 + 3363*x^5 + 19601*x^6 + 114243*x^7 + ...
		

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
  • J. W. L. Glaisher, On Eulerian numbers (formulas, residues, end-figures), with the values of the first twenty-seven, Quarterly Journal of Mathematics, vol. 45, 1914, pp. 1-51.
  • G. K. Panda, Some fascinating properties of balancing numbers, In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium 194 (2009), 185-189.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 257-258.
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022

Crossrefs

Bisection of A001333. A003499(n) = 2a(n).
Cf. A055997 = numbers n such that n(n-1)/2 is a square.
Row 1 of array A188645.
Cf. A055792 (terms squared), A132592.

Programs

  • Haskell
    a001541 n = a001541_list !! (n-1)
    a001541_list =
    1 : 3 : zipWith (-) (map (* 6) $ tail a001541_list) a001541_list
    -- Reinhard Zumkeller, Oct 06 2011
    (Scheme, with memoization-macro definec)
    (definec (A001541 n) (cond ((zero? n) 1) ((= 1 n) 3) (else (- (* 6 (A001541 (- n 1))) (A001541 (- n 2))))))
    ;; Antti Karttunen, Oct 04 2016
  • Magma
    [n: n in [1..10000000] |IsSquare(8*(n^2-1))]; // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a[0]:=1: a[1]:=3: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001541:=-(-1+3*z)/(1-6*z+z**2); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Simplify[(1/2) (3 + 2 Sqrt[2])^n + (1/2) (3 - 2 Sqrt[2])^n], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
    a[ n_] := If[n == 0, 1, With[{m = Abs @ n}, m Sum[4^i Binomial[m + i, 2 i]/(m + i), {i, 0, m}]]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := ChebyshevT[ n, 3]; (* Michael Somos, Jul 11 2011 *)
    LinearRecurrence[{6, -1}, {1, 3}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
  • PARI
    {a(n) = real((3 + quadgen(32))^n)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = subst( poltchebi( abs(n)), x, 3)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = if( n<0, a(-n), polsym(1 - 6*x + x^2, n) [n+1] / 2)}; /* Michael Somos, Apr 07 2003 */
    
  • PARI
    {a(n) = polchebyshev( n, 1, 3)}; /* Michael Somos, Jul 11 2011 */
    
  • PARI
    a(n)=([1,2,2;2,1,2;2,2,3]^n)[3,3] \\ Vim Wenders, Mar 28 2007
    

Formula

G.f.: (1-3*x)/(1-6*x+x^2). - Barry E. Williams and Wolfdieter Lang, May 05 2000
E.g.f.: exp(3*x)*cosh(2*sqrt(2)*x). Binomial transform of A084128. - Paul Barry, May 16 2003
From N. J. A. Sloane, May 16 2003: (Start)
a(n) = sqrt(8*((A001109(n))^2) + 1).
a(n) = T(n, 3), with Chebyshev's T-polynomials A053120. (End)
a(n) = ((3+2*sqrt(2))^n + (3-2*sqrt(2))^n)/2.
a(n) = cosh(2*n*arcsinh(1)). - Herbert Kociemba, Apr 24 2008
a(n) ~ (1/2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all elements x of the sequence, 2*x^2 - 2 is a square. Limit_{n -> infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002 [corrected by Peter Pein, Mar 09 2009]
a(n) = 3*A001109(n) - A001109(n-1), n >= 1. - Barry E. Williams and Wolfdieter Lang, May 05 2000
For n >= 1, a(n) = A001652(n) - A001652(n-1). - Charlie Marion, Jul 01 2003
From Paul Barry, Sep 18 2003: (Start)
a(n) = ((-1+sqrt(2))^n + (1+sqrt(2))^n + (1-sqrt(2))^n + (-1-sqrt(2))^n)/4 (with interpolated zeros).
E.g.f.: cosh(x)*cosh(sqrt(2)x) (with interpolated zeros). (End)
For n > 0, a(n)^2 + 1 = 2*A001653(n-1)*A001653(n). - Charlie Marion, Dec 21 2003
a(n)^2 + a(n+1)^2 = 2*(A001653(2*n+1) - A001652(2*n)). - Charlie Marion, Mar 17 2003
a(n) = Sum_{k >= 0} binomial(2*n, 2*k)*2^k = Sum_{k >= 0} A086645(n, k)*2^k. - Philippe Deléham, Feb 29 2004
a(n)*A002315(n+k) = A001652(2*n+k) + A001652(k) + 1; for k > 0, a(n+k)*A002315(n) = A001652(2*n+k) - A001652(k-1). - Charlie Marion, Mar 17 2003
For n > k, a(n)*A001653(k) = A011900(n+k) + A053141(n-k-1). For n <= k, a(n)*A001653(k) = A011900(n+k) + A053141(k-n). - Charlie Marion, Oct 18 2004
A053141(n+1) + A055997(n+1) = a(n+1) + A001109(n+1). - Creighton Dement, Sep 16 2004
a(n+1) - A001542(n+1) = A090390(n+1) - A046729(n) = A001653(n); a(n+1) - 4*A079291(n+1) = (-1)^(n+1). Formula generated by the floretion - .5'i + .5'j - .5i' + .5j' - 'ii' + 'jj' - 2'kk' + 'ij' + .5'ik' + 'ji' + .5'jk' + .5'ki' + .5'kj' + e. - Creighton Dement, Nov 16 2004
a(n) = sqrt( A055997(2*n) ). - Alexander Adamchuk, Nov 24 2006
a(2n) = A056771(n). a(2*n+1) = 3*A077420(n). - Alexander Adamchuk, Feb 01 2007
a(n) = (A000129(n)^2)*4 + (-1)^n. - Vim Wenders, Mar 28 2007
2*a(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + A001542(k)^2. - Charlie Marion, Oct 12 2007
a(n) = A001333(2*n). - Ctibor O. Zizka, Aug 13 2008
A028982(a(n)-1) + 2 = A028982(a(n)+1). - Juri-Stepan Gerasimov, Mar 28 2011
a(n) = 2*A001108(n) + 1. - Paul Weisenhorn, Dec 17 2011
a(n) = sqrt(2*x^2 + 1) with x being A001542(n). - Zak Seidov, Jan 30 2013
a(2n) = 2*a(n)^2 - 1 = a(n)^2 + 2*A001542(n)^2. a(2*n+1) = 1 + 2*A002315(n)^2. - Steven J. Haker, Dec 04 2013
a(n) = 3*a(n-1) + 4*A001542(n-1); e.g., a(4) = 99 = 3*17 + 4*12. - Zak Seidov, Dec 19 2013
a(n) = cos(n * arccos(3)) = cosh(n * log(3 + 2*sqrt(2))). - Daniel Suteu, Jul 28 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Inverse binomial transform of A084130.
Exponential convolution of A000079 and A084058.
Sum_{n>=0} (-1)^n*a(n)/n! = cosh(2*sqrt(2))/exp(3) = 0.4226407909842764637... (End)
a(2*n+1) = 2*a(n)*a(n+1) - 3. - Timothy L. Tiffin, Oct 12 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Jan 20 2017
a(2^n) = A001601(n+1). - A.H.M. Smeets, May 28 2017
a(A298210(n)) = A002350(2*n^2). - A.H.M. Smeets, Jan 25 2018
a(n) = S(n, 6) - 3*S(n-1, 6), for n >= 0, with S(n, 6) = A001109(n+1), (Chebyshev S of A049310). See the first comment and the formula a(n) = T(n, 3). - Wolfdieter Lang, Nov 22 2020
From Peter Bala, Dec 31 2021: (Start)
a(n) = [x^n] (3*x + sqrt(1 + 8*x^2))^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) hold for all prime p and positive integers n and k.
O.g.f. A(x) = 1 + x*d/dx(log(B(x))), where B(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. of A001850. (End)
From Peter Bala, Aug 17 2022: (Start)
Sum_{n >= 1} 1/(a(n) - 2/a(n)) = 1/2.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 1/a(n)) = 1/4.
Sum_{n >= 1} 1/(a(n)^2 - 2) = 1/2 - 1/sqrt(8). (End)
From Peter Bala, Jun 23 2025: (Start)
Product_{n >= 0} (1 + 1/a(2^n)) = sqrt(2).
Product_{n >= 0} (1 - 1/(2*a(2^n))) = (4/7)*sqrt(2). See A002812. (End)

A005319 a(n) = 6*a(n-1) - a(n-2).

Original entry on oeis.org

0, 4, 24, 140, 816, 4756, 27720, 161564, 941664, 5488420, 31988856, 186444716, 1086679440, 6333631924, 36915112104, 215157040700, 1254027132096, 7309005751876, 42600007379160, 248291038523084, 1447146223759344, 8434586304032980
Offset: 0

Views

Author

Keywords

Comments

Solutions y of the equation 2x^2-y^2=2; the corresponding x values are given by A001541. - N-E. Fahssi, Feb 25 2008
The lower intermediate convergents to 2^(1/2) beginning with 4/3, 24/17, 140/99, 816/577, form a strictly increasing sequence; essentially, numerators=A005319 and denominators=A001541. - Clark Kimberling, Aug 26 2008
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 1 + n*n/2. - Ctibor O. Zizka, Nov 09 2009
All nonnegative solutions of the indefinite binary quadratic form X^2 + 4*X*Y -4*Y^2 of discriminant 32, representing -4 are (X(n), Y(n)) = (a(n), A001653(n+1)), for n >= 0. - Wolfdieter Lang, Jun 13 2018
Also the number of edge covers in the n-triangular snake graph. - Eric W. Weisstein, Jun 08 2019
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0Michael Somos, Jun 26 2022
a(n) is the sum of 4*n consecutive powers of the silver ratio 1+sqrt(2), starting at (1+sqrt(2))^(-2*n) and ending at (1+sqrt(2))^(2*n-1). - Greg Dresden and Ruxin Sheng, Jul 25 2024

Examples

			G.f. = 4*x + 24*x^2 + 140*x^3 + 816*x^4 + 4756*x^5 + ... - _Michael Somos_, Jun 26 2022
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    a:=[0,4]; [n le 2 select a[n] else 6*Self(n-1) - Self(n-2):n in [1..22]]; // Marius A. Burtea, Sep 19 2019
    
  • Mathematica
    LinearRecurrence[{6, -1}, {0, 4}, 22] (* Jean-François Alcover, Sep 26 2017 *)
    Table[((3 + 2 Sqrt[2])^n - (3 - 2 Sqrt[2])^n)/Sqrt[2], {n, 20}] // Expand (* Eric W. Weisstein, Jun 08 2019 *)
    CoefficientList[Series[(4 x)/(1 - 6 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 08 2019 *)
    a[ n_] := 4*ChebyshevU[n-1, 3]; (* Michael Somos, Jun 26 2022 *)
  • PARI
    {a(n) = 4*polchebyshev(n-1, 2, 3)}; /* Michael Somos, Jun 26 2022 */

Formula

G.f.: 4*x / ( 1-6*x+x^2 ). - Simon Plouffe in his 1992 dissertation.
G.f. for signed version beginning with 1: (1+2*x+x^2)/(1+6*x+x^2).
For any term n of the sequence, 2*n^2 + 4 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / sqrt(2). - Gregory V. Richardson, Oct 06 2002
(-1)^(n+1) = A090390(n+1) + A001542(n+1) + A046729(n) - a(n) (conjectured). - Creighton Dement, Nov 17 2004
For n > 0, a(n) = A000129(n+1)^2 - A000129(n-1)^2; a(n) = A046090(n-1) + A001652(n); e.g., 816 = 120 + 696; a(n) = A001653(n) - A001653(n-1); e.g., 816 = 985 - 169. - Charlie Marion Jul 22 2005
a(n) = 4*A001109(n). - M. F. Hasler, Mar 2009
For n > 1, a(n) is the denominator of continued fraction [1,4,1,4,...,1,4] with (n-1) repetitions of 1,4. For the numerators, see A001653. - Greg Dresden, Sep 10 2019
1/a(n) - 1/a(n+1) = 1/(Pell(2*n+1) - 1/Pell(2*n+1)) for n >= 1, where Pell(n) = A000129(n). - Peter Bala, Aug 21 2022
E.g.f.: sqrt(2)*exp(3*x)*sinh(2*sqrt(2)*x). - Stefano Spezia, Nov 25 2022
a(n) = 2*A000129(2*n). - Tanya Khovanova and MIT PRIMES STEP senior group, Apr 17 2024

A084159 Pell oblongs.

Original entry on oeis.org

1, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Essentially the same as A046727.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Cf. A046727 (same sequence except for first term).

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)+2*(-1)^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    b[n_]:= Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]];
    Join[{1}, Table[b[n+1], {n,50}]*Table[b[n], {n,50}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
    LinearRecurrence[{5,5,-1},{1,3,21},30] (* Harvey P. Dale, Aug 04 2019 *)
  • SageMath
    [(lucas_number2(2*n+1, 2, -1) + 2*(-1)^n)/4 for n in range(31)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) + 2*(-1)^n)/4.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Paul Curtz, May 17 2008
G.f.: (1-x)^2/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = A078057(n)*A001333(n). - R. J. Mathar, Jul 08 2009
a(n) = A001333(n)*A001333(n+1).
From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n*R(n,-4), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1) and T(n,x) the Chebyshev polynomial of the first kind.
a(n) = (-1)^n + 4*Sum_{k = 1..n} (-1)^(n-k)*8^(k-1)*binomial(n+k,2*k).
Recurrence equations: a(n) = 6*a(n-1) - a(n-2) + 4*(-1)^n, with a(0) = 1 and a(1) = 3; a(n)*a(n-2) = a(n-1)*(a(n-1)+4*(-1)^n).
Sum_{k >= 0} (-1)^k/a(k) = 1/sqrt(2).
1 - 2*(Sum_{k = 0..n} (-1)^k/a(k))^2 = (-1)^(n+1)/A090390(n+1). (End)
a(n) = (A001333(2*n+1) + (-1)^n)/2. - G. C. Greubel, Oct 11 2022
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Aug 03 2024

A221200 T(n,k)=Number of nXk arrays of occupancy after each element moves to some horizontal, diagonal or antidiagonal neighbor, with no occupancy greater than 2.

Original entry on oeis.org

0, 1, 0, 2, 9, 0, 4, 10, 49, 0, 8, 196, 46, 289, 0, 16, 720, 9025, 212, 1681, 0, 32, 6400, 58700, 427716, 976, 9801, 0, 64, 34272, 2518569, 4984812, 20277009, 4492, 57121, 0, 128, 242064, 32085376, 1026177156, 433687328, 961434049, 20672, 332929, 0, 256
Offset: 1

Views

Author

R. H. Hardin Jan 04 2013

Keywords

Comments

Table starts
.0........1......2.............4.............8..............16.............32
.0........9.....10...........196...........720............6400..........34272
.0.......49.....46..........9025.........58700.........2518569.......32085376
.0......289....212........427716.......4984812......1026177156....30374196832
.0.....1681....976......20277009.....433687328....420771471561.29037336149952
.0.....9801...4492.....961434049...38397901048.172850051090025
.0....57121..20672...45583531009.3437301520640
.0...332929..95128.2161117565476
.0..1940449.437752
.0.11309769
.0
Even columns are perfect squares

Examples

			Some solutions for n=3 k=4
..0..2..2..0....0..0..1..0....0..2..2..0....0..1..2..2....0..1..2..0
..1..0..0..2....2..1..1..2....0..2..1..1....1..2..0..1....1..1..1..2
..1..2..2..0....1..2..1..1....2..1..1..0....1..0..2..0....1..2..1..0
		

Crossrefs

Column 2 is A090390

A086348 On a 3 X 3 board, number of n-move routes of chess king ending in the central square.

Original entry on oeis.org

1, 8, 32, 168, 784, 3840, 18432, 89216, 430336, 2078720, 10035200, 48457728, 233967616, 1129709568, 5454692352, 26337640448, 127169265664, 614027755520, 2964787822592, 14315262836736
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in the central square m (m = 5).
Inverse binomial transform of A090390 (without the first leading 1).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array T(n,k) counting king walks on an n X n board starting on a square on the diagonal next to a corner:
1,8,32,168,784,3840,18432,89216,430336,2078720,10035200,48457728,233967616,
1,8,47,275,1610,9425,55175,323000,1890875,11069375,64801250,379353125,
1,8,47,318,2013,13140,84555,547722,3537081,22874400,147831399,955690326,
1,8,47,318,2134,14539,99267,679189,4650100,31848677,218164072,1494530576,
1,8,47,318,2134,14880,103920,733712,5187856,36796224,261164848,1855327584,
1,8,47,318,2134,14880,104885,748845,5382180,38880243,281743740,2045995632,
1,8,47,318,2134,14880,104885,751590,5430735,39556080,289541500,2127935700,
1,8,47,318,2134,14880,104885,751590,5438580,39710495,291852880,2156410817,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292340803,2164218694,
1,8,47,318,2134,14880,104885,751590,5438580,39733008,292405638,2165752797, (End)

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [1,1,1,1,0,1,1,1,1]: A:=Matrix([[0,1,0,1,1,0,0,0,0],[1,0,1,1,1,1,0,0,0],[0,1,0,0,1,1,0,0,0],[1,1,0,0,1,0,1,1,0],A[5],[0,1,1,0,1,0,0,1,1],[0,0,0,1,1,0,0,1,0],[0,0,0,1,1,1,1,0,1],[0,0,0,0,1,1,0,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/16)(4(-2)^(n+1)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}]

Formula

a(n) = (1/16)(4(-2)^(n+1) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
G.f.: ( 1+6*x+4*x^2 ) / ( (2*x+1)*(-4*x^2-4*x+1) ).
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=8 and a(2)=32.
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). (End)
2*a(n) = 3*A057087(n) + 2*A057087(n-1) - (-2)^n. - R. J. Mathar, May 21 2019

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A095344 Length of n-th string generated by a Kolakoski(9,1) rule starting with a(1)=1.

Original entry on oeis.org

1, 1, 9, 9, 49, 81, 281, 601, 1729, 4129, 11049, 27561, 71761, 182001, 469049, 1197049, 3073249, 7861441, 20154441, 51600201, 132217969, 338618769, 867490649, 2221965721, 5691928321, 14579791201, 37347504489, 95666669289, 245056687249, 627723364401
Offset: 1

Views

Author

Benoit Cloitre, Jun 03 2004

Keywords

Comments

Each string is derived from the previous string using the Kolakoski(9,1) rule and the additional condition: "string begins with 1 if previous string ends with 9 and vice versa". The strings are 1 -> 9 -> 111111111 -> 919191919 -> 11111111191111111119... -> ... and each one contains 1,1,9,9,31,... elements.

Crossrefs

Programs

  • GAP
    a:=[1,1,9];; for n in [4..35] do a[n]:=5*a[n-2]+4*a[n-3]; od; a; # G. C. Greubel, Dec 26 2019
  • Haskell
    a095344 n = a095344_list !! (n-1)
    a095344_list = tail xs where
       xs = 1 : 1 : 1 : zipWith (-) (map (* 5) $ zipWith (+) (tail xs) xs) xs
    -- Reinhard Zumkeller, Aug 16 2013
    
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x+ 4*x^2)/((1+x)*(1-x-4*x^2)) )); // G. C. Greubel, Dec 26 2019
    
  • Maple
    seq(simplify(2*(-1)^n -(2/I)^n*(ChebyshevU(n, I/4) -2*I*ChebyshevU(n-1, I/4)) ), n = 1..35); # G. C. Greubel, Dec 26 2019
  • Mathematica
    Table[2*(-1)^n - 2^n*(Fibonacci[n+1, 1/2] - 2*Fibonacci[n, 1/2]), {n,35}] (* G. C. Greubel, Dec 26 2019 *)
    LinearRecurrence[{0,5,4},{1,1,9},40] (* Harvey P. Dale, Oct 12 2022 *)
  • PARI
    Vec(x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 20 2016
    
  • PARI
    vector(35, n, round( 2*(-1)^n - (2/I)^n*(polchebyshev(n, 2, I/4) -2*I*polchebyshev(n-1, 2, I/4)) )) \\ G. C. Greubel, Dec 26 2019
    
  • Sage
    def A095344_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) ).list()
    a=A095344_list(35); a[1:] # G. C. Greubel, Dec 26 2019
    

Formula

a(1) = a(2) = 1; for n>1, a(n) = a(n-1) + 4*a(n-2) - 4*(-1)^n.
G.f.: x*(1 + x + 4*x^2)/((1 + x)*(1 - x - 4*x^2)). - Colin Barker, Mar 25 2012
a(n) = 5*a(n-2) + 4*a(n-3). - Colin Barker, Mar 25 2012
a(n) = 2*(-1)^n + (2^(-1-n)*(-(-7+sqrt(17))*(1+sqrt(17))^n - (1-sqrt(17))^n*(7+sqrt(17))))/sqrt(17). - Colin Barker, Apr 20 2016
a(n) = 2*(-1)^n - 2^n*(Fibonacci(n+1, 1/2) - 2*Fibonacci(n, 1/2)) = 2*(-1)^n - (2/I)^n*(ChebyshevU(n, I/4) - 2*I*ChebyshevU(n-1, I/4)). - G. C. Greubel, Dec 26 2019

A221139 T(n,k) = number of n X k arrays of occupancy after each element moves to some horizontal or vertical neighbor, with no occupancy greater than 2.

Original entry on oeis.org

0, 1, 1, 2, 9, 2, 4, 49, 49, 4, 8, 289, 656, 289, 8, 16, 1681, 12544, 12544, 1681, 16, 32, 9801, 200072, 643204, 200072, 9801, 32, 64, 57121, 3485689, 31203396, 31203396, 3485689, 57121, 64, 128, 332929, 58132316, 1539699121, 4235650596, 1539699121
Offset: 1

Views

Author

R. H. Hardin, Jan 02 2013

Keywords

Comments

Table starts
....0........1............2...............4.................8
....1........9...........49.............289..............1681
....2.......49..........656...........12544............200072
....4......289........12544..........643204..........31203396
....8.....1681.......200072........31203396........4235650596
...16.....9801......3485689......1539699121......619901126244
...32....57121.....58132316.....75512292025....86907967843320
...64...332929....990486784...3709710975721.12474883501876324
..128..1940449..16699002692.182118668668225
..256.11309769.282999528529
..512.65918161
.1024
Even rows and columns are perfect squares.

Examples

			Some solutions for n=3, k=4:
..1..1..1..2....1..1..1..1....1..1..0..2....1..1..2..1....1..1..2..0
..2..1..0..1....0..0..1..0....2..2..1..1....1..2..0..1....1..1..0..0
..0..1..2..0....2..2..2..1....0..0..2..0....0..2..0..1....1..2..1..2
		

Crossrefs

Column 1 is A000079(n-2).
Column 2 is A090390.

A123270 a(0)=1, a(1)=1, a(n) = 5*a(n-1) + 4*a(n-2).

Original entry on oeis.org

1, 1, 9, 49, 281, 1601, 9129, 52049, 296761, 1692001, 9647049, 55003249, 313604441, 1788035201, 10194593769, 58125109649, 331403923321, 1889520055201, 10773215969289, 61424160067249, 350213664213401, 1996764961336001
Offset: 0

Views

Author

Philippe Deléham, Oct 09 2006

Keywords

Comments

First differences give {0, 8, 40, 232, 1320, 7528, 42920, ...} = 8*A015537(n) = 8 * {0, 1, 5, 29, 165, 941, 5365, ...}. - Alexander Adamchuk, Nov 03 2006

Crossrefs

Programs

  • Haskell
    a123270 n = a123270_list !! n
    a123270_list = 1 : 1 : zipWith (-) (map (* 5) $
       zipWith (+) (tail a123270_list) a123270_list) a123270_list
    -- Reinhard Zumkeller, Aug 16 2013
  • Mathematica
    LinearRecurrence[{5,4},{1,1},30] (* Harvey P. Dale, Jul 25 2011 *)

Formula

a(n) = Sum_{k=0..n} 4^(n-k)*A122542(n,k).
G.f.: (1-4*x)/(1-5*x-4*x^2).
a(n) = 1 + 8*Sum_{k=0..n} A015537(k). - Alexander Adamchuk, Nov 03 2006

A302946 Number of minimal (and minimum) total dominating sets in the 2n-crossed prism graph.

Original entry on oeis.org

4, 36, 196, 1156, 6724, 39204, 228484, 1331716, 7761796, 45239076, 263672644, 1536796804, 8957108164, 52205852196, 304278004996, 1773462177796, 10336495061764, 60245508192804, 351136554095044, 2046573816377476, 11928306344169796, 69523264248641316
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2018

Keywords

Comments

Extended to a(1) using the formula/recurrence.
Since minimal and minimum total dominating sets are equivalent, the crossed prism graphs could be said to be "well totally dominated".

Crossrefs

Cf. A001333, A002203 (sqrt), A090390 (quarter), A287062, A291772, A302941.

Programs

  • Mathematica
    Table[2 (ChebyshevT[n, 3] + (-1)^n), {n, 20}]
    Table[4 (-1)^n ChebyshevT[n, I]^2, {n, 20}]
    LinearRecurrence[{5, 5, -1}, {4, 36, 196}, 20]
    CoefficientList[Series[-4 (-1 - 4 x + x^2)/(1 - 5 x - 5 x^2 + x^3), {x, 0, 20}], x]
  • PARI
    Vec(4*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Apr 16 2018
    
  • PARI
    a(n) = 2*(polchebyshev(n,1,3) + (-1)^n); \\ Michel Marcus, Apr 17 2018

Formula

From Andrew Howroyd, Apr 16 2018: (Start)
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
G.f.: 4*x*(1 + 4*x - x^2)/((1 + x)*(1 - 6*x + x^2)).
a(n) = 4*A090390(n) = 4*A001333(n)^2. (End)
a(n) = 2*(chebyshevT(n,3) + (-1)^n). - Eric W. Weisstein, Apr 17 2018
a(n) = 4*(-1)^n*chebyshevT(n,i)^2, where i is the imaginary unit. - Eric W. Weisstein, Apr 17 2018
E.g.f.: 2*(exp(-x) + exp(3*x)*cosh(2*sqrt(2)*x) - 2). - Stefano Spezia, Aug 03 2024

Extensions

a(1) and terms a(6) and beyond from Andrew Howroyd, Apr 16 2018

A114619 a(n) = 2*A079291(n) (twice squares of Pell numbers).

Original entry on oeis.org

0, 2, 8, 50, 288, 1682, 9800, 57122, 332928, 1940450, 11309768, 65918162, 384199200, 2239277042, 13051463048, 76069501250, 443365544448, 2584123765442, 15061377048200, 87784138523762, 511643454094368
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 2*(n-1)^2 else 5*Self(n-1) +5*Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    2*Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [2*lucas_number1(n,2,-1)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 2*A000129(n)^2.
G.f.: 2*x*(1-x)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2 - (-1)^n. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007

Extensions

Entry revised by N. J. A. Sloane, Mar 15 2024
Showing 1-10 of 16 results. Next