A098515 Least m such that m and m+n are both products of exactly n primes counting multiplicity.
1, 2, 4, 27, 36, 675, 810, 12393, 7552, 268992, 506240, 6436341, 2440692, 290698227, 455503986, 4897228800, 520575984, 519417147375, 124730265582, 8961777270765, 753891573760, 203558860750848, 51126160064490, 4021771417157632, 1305269217263592, 69131417822953472, 57710779788427264, 1838459534098563045, 63846774162325476
Offset: 1
Keywords
Examples
4=2*2 & 6=2*3; 27=3*3*3 & 30=2*3*5; 36=2*2*3*3 & 40=2*2*2*5; 675=3*3*3*5*5 & 680=2*2*2*5*17; 810=2*3*3*3*3*5 and 816=2*2*2*2*3*17; etc.
Programs
-
Mathematica
f[n_Integer] := Plus @@ Transpose[FactorInteger[n]][[2]]; g[n_] := (k = 2^n; While[a = f[k]; b = f[k + n]; a != b || a != n, k++ ]; k); Do[ Print[ g[n]], {n, 12}]
Extensions
More terms from David Wasserman, Feb 20 2008