cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A097978 a(n) = least m such that m and m+n are both products of exactly n distinct primes.

Original entry on oeis.org

1, 2, 33, 102, 1326, 115005, 31295895, 159282123, 9617162170, 1535531452026, 1960347077019695, 16513791577659519, 271518698440871310
Offset: 0

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Comments

Note that a(n) and a(n)+n are required to be squarefree (compare A135058). - David Wasserman, Feb 19 2008
If we change "exactly n" to "at least n", the sequence is still the same at least through a(12). - David Wasserman, Feb 19 2008
a(13) <= 592357638037885411965. - David Wasserman, Feb 19 2008

Examples

			a(2) = 33  because 33 and 35 are both in A006881.
a(3) = 102 because 102 and 105 are both in A007304.
a(4) = 1326 because 1326 and 1330 are both in A046386.
		

Crossrefs

Cf. A098515. A135058 (without regard to multiplicity).

Programs

  • Mathematica
    f[n_] := Block[{lst = FactorInteger[n], a, b}, a = Plus @@ Last /@ lst; b = Length[lst]; If[a == b, b, 0]]; g[n_] := Block[{k = Product[ Prime[i], {i, n}]}, While[ f[k] != n || f[k] != f[k + n], k++ ]; k]; Do[ Print[ g[n]], {n, 1, 6}] (* Robert G. Wilson v, Sep 11 2004 *)

Formula

a(n) = min{m: A001221(m) = A001222(m) = A001221(m+n) = A001222(m+n)= n}. - R. J. Mathar, Mar 01 2017

Extensions

Edited and extended by Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 08 2004
More terms from David Wasserman, Feb 19 2008

A124945 Numbers k such that k and k+10 are 10-almost primes.

Original entry on oeis.org

506240, 789750, 1325312, 1567350, 1761750, 1944800, 2450240, 2579840, 3004928, 3013686, 3093750, 3153654, 3713526, 3844736, 3906240, 4024566, 4394240, 5244416, 5402240, 5431040, 6208640, 6310710, 6932790, 7053750, 7352694, 7585974, 8005878, 8043776, 8099190
Offset: 1

Views

Author

Zak Seidov, Nov 13 2006

Keywords

Comments

First term 506240 = A098515(10).

Examples

			506240=2^7*5*7*113, 506250=2*3^4*5^5;
789750=2*3^5*5^3*13, 789760=2^8*5*617;
1325312=2^8*31*167, 1325322=2*3^8*101;
1567350=2*3^6*5^2*43, 1567360=2^7*5*31*79.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7],PrimeOmega[#]==PrimeOmega[#+10]==10&] (* James C. McMahon, Dec 14 2024 *)
  • PARI
    isok(n) = (bigomega(n) == 10) && (bigomega(n+10) == 10); \\ Michel Marcus, Oct 11 2013
    
  • PARI
    P=prod(i=1,25,prime(i))^10; v=List(); for(n=1,1e6, g1=gcd(n,P); o1=bigomega(g1); if(o1<5,next); g2=gcd(n+10,P); o2=bigomega(g2); if(o2>=5 && o1+bigomega(n/g1)==10 && o2+bigomega((n+10)/g2)==10, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Oct 11 2013

Extensions

More terms from Michel Marcus, Oct 11 2013

A135058 Least m such that both m and m+n have exactly n distinct prime divisors, ignoring multiplicity.

Original entry on oeis.org

1, 2, 10, 102, 1326, 96135, 607614, 159282123, 9617162170, 1110180535035, 28334309296920, 16513791577659519, 271518698440871310
Offset: 0

Views

Author

David Wasserman, Feb 11 2008

Keywords

Comments

Note that here the m and m+n may be divisible by squares (compare A097978).
a(13) <= 592357638037885411965.
If we change "exactly n" to "at least n", the sequence is still the same at least through a(12).

Examples

			a(2) = 10 because 10=2*5 and 12=3*2^2 have two distinct prime factors.
a(3) = 102 because 102=2*3*17 and 105=3*5*7 each have three distinct prime factors.
a(5) = 96135 because 96135 = 3*5*13*17*29 and 96140 = 2^2*5*11*19*23 each have 5 distinct prime factors.
		

Crossrefs

Formula

a(n) = min{m: A001221(m) = A001221(m+n) = n}. - R. J. Mathar, Mar 01 2017

A124946 n and n+9 are 9-almost primes.

Original entry on oeis.org

268992, 338976, 516375, 675783, 922176, 984375, 1060695, 1107351, 1164375, 1216215, 1233216, 1361367, 1388736, 1458720, 1668672, 1843632, 1877175, 2018592, 2075463, 2317491, 2333520, 2395575, 2440935, 2457936, 2495367, 2499255, 2546775, 2559375, 2811744
Offset: 1

Views

Author

Zak Seidov, Nov 13 2006

Keywords

Comments

First term 268992 = A098515(9).
The first term not divisible by 9 is a(163) = 9384375. The first term not divisible by 3 is a(193) = 10504375. - Charles R Greathouse IV, Oct 11 2013

Examples

			268992=2^6*3^2*467, 268992+9=269001=3^8*41;
338976=2^5*3^2*11*107, 338976+9=338985=3^7*5*31.
		

Crossrefs

Programs

  • PARI
    isok(n) = (bigomega(n) == 9) && (bigomega(n+9) == 9); \\ Michel Marcus, Oct 11 2013

Extensions

More terms from Michel Marcus, Oct 11 2013
Showing 1-4 of 4 results.