cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098521 E.g.f. exp(x)*BesselI(2,2*sqrt(2)*x)/2.

Original entry on oeis.org

0, 0, 1, 3, 14, 50, 195, 721, 2716, 10116, 37845, 141295, 528330, 1975766, 7395479, 27698685, 103821240, 389410568, 1461605481, 5489516955, 20630539910, 77579118330, 291893775019, 1098848179561, 4138773239892, 15596070165900, 58797332264125, 221762856917511, 836756771788098
Offset: 0

Views

Author

Paul Barry, Sep 12 2004

Keywords

Comments

Binomial transform of e.g.f. BesselI(2,2*sqrt(2)*x)/2, or {0,0,1,0,8,0,60,0,448,0,3360,...} with g.f. ((1-4*x^2)-sqrt(1-8*x^2))/(8*x^2*sqrt(1-8*x^2)).

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); [0,0] cat Coefficients(R!((1-2*x-3*x^2-(1-x)*Sqrt(1-2*x-7*x^2))/(8*x^2*Sqrt(1-2*x-7*x^2)))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    CoefficientList[Series[(1-2*x-3*x^2-(1-x)*Sqrt[1-2*x-7*x^2]) / (8*x^2*Sqrt[1-2*x-7*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 28 2012 *)
  • PARI
    x='x+O('x^66); concat([0,0],Vec((1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^2*sqrt(1-2*x-7*x^2)))) \\ Joerg Arndt, May 11 2013
    

Formula

G.f.: (1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^2*sqrt(1-2*x-7*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+2)*2^k.
Conjecture: (n+2)*a(n) -(4n+3)*a(n-1) -3*(2n+1)*a(n-2) +(20n-29)*a(n-3) +21*(n-3)*a(n-4)=0. - R. J. Mathar, Dec 08 2011
Shorter recurrence (for n>=3): (n-2)*(n+2)*a(n) = n*(2*n-1)*a(n-1) + 7*(n-1)*n*a(n-2). - Vaclav Kotesovec, Dec 28 2012
a(n) ~ sqrt(8+2*sqrt(2))*(1+2*sqrt(2))^n/(8*sqrt(Pi*n)). - Vaclav Kotesovec, Dec 28 2012

A115991 Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j)*2^(n-j).

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 13, 9, 5, 1, 49, 31, 17, 7, 1, 161, 105, 61, 29, 9, 1, 581, 371, 217, 111, 45, 11, 1, 2045, 1313, 781, 417, 189, 65, 13, 1, 7393, 4719, 2825, 1551, 753, 303, 89, 15, 1, 26689, 17041, 10277, 5757, 2921, 1289, 461, 117, 17, 1
Offset: 0

Views

Author

Paul Barry, Feb 10 2006

Keywords

Comments

First column is A084601 with e.g.f. exp(x) Bessel_I(0,2*sqrt(2)x). Row sums are A098518(n+1) with e.g.f. dif(exp(x) Bessel_I(1,2*sqrt(2)x)/sqrt(2)).
Riordan array (1/sqrt(1-2*x-7*x^2), (1+x-sqrt(1-2*x-7*x^2))/2).

Examples

			Triangle begins as:
    1;
    1,   1;
    5,   3,   1;
   13,   9,   5,   1;
   49,  31,  17,   7,  1;
  161, 105,  61,  29,  9,  1;
  581, 371, 217, 111, 45, 11, 1;
		

Crossrefs

Cf. A084601 (k=0), A098518.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j)) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[(&+[Binomial(n-k, j-k)*Binomial(j, n-j)*2^(n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
    
  • Maple
    A115991 := proc(n,k)
        add(binomial(n-k,j-k)*binomial(j,n-j)*2^(n-j),j=0..n) ;
    end proc:
    seq(seq(A115991(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
  • Mathematica
    Table[Sum[Binomial[n-k, j-k]*Binomial[j, n-j]*2^(n-j), {j, 0, n}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 09 2019 *)
  • PARI
    {T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j))}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[sum(binomial(n-k, j-k)*binomial(j, n-j)*2^(n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
    
Showing 1-2 of 2 results.