A098519 E.g.f. exp(x)*BesselI(1,2*sqrt(3)*x)/sqrt(3).
0, 1, 2, 12, 40, 185, 726, 3157, 13112, 56331, 239230, 1028522, 4414224, 19045039, 82237442, 356104140, 1544056864, 6707220443, 29172892518, 127058629852, 554006070200, 2418204764451, 10565384173762, 46202462762837, 202207635999240, 885642000534925, 3881697614968706
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
Table[SeriesCoefficient[2*x/(1-2*x-11*x^2+(1-x)*Sqrt[1-2*x-11*x^2]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *) With[{nn=30},CoefficientList[Series[Exp[x] BesselI[1,2x Sqrt[3]]/Sqrt[3],{x,0,nn}],x] Range[0,nn]!]//Simplify (* Harvey P. Dale, Apr 27 2016 *)
-
PARI
x='x+O('x^66); concat([0],Vec(2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)))) \\ Joerg Arndt, May 11 2013
Formula
G.f.: 2*x/(1-2*x-11*x^2+(1-x)*sqrt(1-2*x-11*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)*3^k.
Conjecture: (n-1)*(n+1)*a(n) - n*(2*n-1)*a(n-1) - 11*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 23 2011
a(n) ~ sqrt(6+sqrt(3))*(1+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
Comments