A098523 Expansion of (1+x^2)/(1-x-x^5) = (1+x^2)/((1-x+x^2)*(1-x^2-x^3)).
1, 1, 2, 2, 2, 3, 4, 6, 8, 10, 13, 17, 23, 31, 41, 54, 71, 94, 125, 166, 220, 291, 385, 510, 676, 896, 1187, 1572, 2082, 2758, 3654, 4841, 6413, 8495, 11253, 14907, 19748, 26161, 34656, 45909, 60816, 80564, 106725, 141381, 187290, 248106
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1).
Crossrefs
Cf. A097333.
Programs
-
Mathematica
CoefficientList[Series[(1+x^2)/(1-x-x^5),{x,0,50}],x] (* or *) LinearRecurrence[ {1,0,0,0,1},{1,1,2,2,2},50] (* Harvey P. Dale, Mar 05 2014 *)
Comments