cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098578 a(n) = Sum_{k=0..floor(n/4)} C(n-3*k,k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 49, 68, 94, 130, 180, 249, 344, 475, 656, 906, 1251, 1727, 2384, 3291, 4543, 6271, 8656, 11948, 16492, 22764, 31421, 43370, 59863, 82628, 114050, 157421, 217285, 299914, 413965, 571387, 788673, 1088588, 1502554
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Comments

Partial sums of A003269 (with leading zero).

Crossrefs

Cf. A077868.

Programs

  • Magma
    I:=[0,1,2,3,4]; [n le 5 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4) - Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[x/((1-x)^2-x^4*(1-x)), {x,0,50}], x] (* or *) LinearRecurrence[{2,-1,0,1,-1}, {0,1,2,3,4}, 50] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/((1-x)^2-x^4*(1-x)))) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: x/((1-x)^2-x^4(1-x)) = x / ((x-1)*(x^4+x-1)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - a(n-5).
a(n) = a(n-1) + a(n-4) + 1.