cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098588 a(n) = 2^n for n = 0..4; for n > 4, a(n) = 2*a(n-1) + a(n-5).

Original entry on oeis.org

1, 2, 4, 8, 16, 33, 68, 140, 288, 592, 1217, 2502, 5144, 10576, 21744, 44705, 91912, 188968, 388512, 798768, 1642241, 3376394, 6941756, 14272024, 29342816, 60327873, 124032140, 255006036, 524284096, 1077911008, 2216149889
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Comments

a(n) equals the number of n-length words on {0,1,2} such that 0 appears only in a run whose length is a multiple of 5. - Milan Janjic, Feb 17 2015

Crossrefs

Programs

  • Magma
    I:=[1,2,4,8,16]; [n le 5 select I[n] else 2*Self(n-1) +Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[1/(1-2*x-x^5), {x,0,50}], x] (* or *) LinearRecurrence[{2,0,0,0,1}, {1,2,4,8,16}, 50] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-2*x-x^5)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: 1/(1-2*x-x^5).
a(n) = Sum_{k=0..floor(n/4)} Sum_{i=0..n} binomial(n-4k, i)binomial(i, k).
G.f.: G(0), where G(k)= 1 + x*(2+x^4)/(1 - x*(2+x^4)/(x*(2+x^4) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
Lim_{n->infinity} a(n)/a(n+1) = 0.486389... is a real root of -1 + 2Z + Z^5 = 0. - Sergei N. Gladkovskii, Jul 03 2013