cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098650 Smallest odd pseudoprime k > b to bases p_i, i.e., the smallest composite number k > b such that p_i^(k-1)-1 is divisible by k, p_i are the prime factors of b, where b is the n-th squarefree number, A005117(n).

Original entry on oeis.org

9, 341, 91, 217, 1105, 25, 561, 15, 21, 561, 1541, 45, 45, 703, 645, 33, 561, 35, 1729, 49, 703, 1729, 561, 45, 561, 1891, 105, 1105, 77, 341, 65, 91, 65, 1729, 1105, 341, 87, 91, 561, 561, 1105, 85, 91, 561, 105, 111, 561, 703, 2465, 91, 561, 105, 781, 561, 91
Offset: 1

Views

Author

Robert G. Wilson v, Sep 18 2004

Keywords

Examples

			A005117(5) = 6 = 2*3. a(5) = 1105 because 1105 is the smallest psp to both bases 2 and 3.
		

References

  • Paulo Ribenboim, The New Book of Prime Number Records, New York: Springer-Verlag, p. 100, 1996.

Crossrefs

Cf. A005117, A007535, A098651 (indices of records), A098652 (records).

Programs

  • Mathematica
    PrimeFactors[ n_ ] := Flatten[ Table[ # [[ 1 ]], {1} ] & /@ FactorInteger[ n ]]; f[n_] := Block[{k = n + 1}, If[ EvenQ[k], k++ ]; While[ PrimeQ[k] || Union[ PowerMod[ PrimeFactors[n], k - 1, k]] != {1}, k += 2]; k]; f /@ Select[ Range[90], SquareFreeQ[ # ] &]
  • PARI
    lista(nn) = my(f, k); for(b=1, nn, if(issquarefree(b), f=factor(b)[, 1]; k=b+1+b%2; while(isprime(k) || sum(i=1, #f, Mod(f[i], k)^(k-1)==1)<#f, k+=2); print1(k, ", "))); \\ Jinyuan Wang, Jul 24 2021

A098652 Records in A098650.

Original entry on oeis.org

9, 341, 1105, 1541, 1729, 1891, 2465, 29341, 162401, 252601, 294409, 334153, 340561, 399001, 410041, 488881, 530881, 636641, 954271, 1024651, 1152271, 1193221, 1461241, 1615681, 1857241
Offset: 1

Views

Author

Robert G. Wilson v, Sep 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1} ] & /@ FactorInteger[ n ]]; f[n_] := Block[{k = n + 1}, If[EvenQ[k], k++ ]; While[ PrimeQ[k] || Union[ PowerMod[ PrimeFactors[n], k - 1, k]] != {1}, k += 2]; k]; a = {1}; b = {9}; Do[ If[ SquareFreeQ[n], c = f[n]; If[c > b[[ -1]], AppendTo[a, n]; AppendTo[b, c]; Print[n]]], {n, 2, 145000}]; b

Extensions

a(13)-a(25) from Amiram Eldar, Jul 07 2021
Showing 1-2 of 2 results.