cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098655 Trace sequence of 3 X 3 symmetric Krawtchouk matrix.

Original entry on oeis.org

3, 2, 20, 8, 144, 32, 1088, 128, 8448, 512, 66560, 2048, 528384, 8192, 4210688, 32768, 33619968, 131072, 268697600, 524288, 2148532224, 2097152, 17184063488, 8388608, 137455730688, 33554432, 1099578736640, 134217728, 8796361457664
Offset: 0

Views

Author

Paul Barry, Sep 19 2004

Keywords

Comments

Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) = trace(A^n).

Crossrefs

Formula

G.f.: (3 - 4*x - 8*x^2)/((1-2*x)*(1-8*x^2)).
a(n) = 2^n + (2*sqrt(2))^n + (-2*sqrt(2))^n.
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
E.g.f.: exp(2*x) + 2*cosh(2*sqrt(2)*x). - Stefano Spezia, Sep 08 2019

A098657 Expansion of (1-x-4x^2)/((1-2x)(1-8x^2)).

Original entry on oeis.org

1, 1, 6, 4, 40, 16, 288, 64, 2176, 256, 16896, 1024, 133120, 4096, 1056768, 16384, 8421376, 65536, 67239936, 262144, 537395200, 1048576, 4297064448, 4194304, 34368126976, 16777216, 274911461376, 67108864, 2199157473280, 268435456, 17592722915328, 1073741824
Offset: 0

Views

Author

Paul Barry, Sep 19 2004

Keywords

Comments

Let A=[1,2,1;2,0,-2;1,-2,1] the 3 X 3 symmetric Krawtchouk matrix. Then a(n) is the 1,1 element of A^n.

References

  • P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.

Crossrefs

Formula

a(n) = 2^((3*n-4)/2)*(1+(-1)^n)+2^(n-1).
a(n) = 2*a(n-1) + 8*a(n-2) - 16*a(n-3).
a(2n) = A081337(n) = (8^n+4^n)/2 and a(2n+1) = 4^n. - Peter Kagey, Jul 14 2023
Showing 1-2 of 2 results.