cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098660 E.g.f. BesselI(0,2*sqrt(2)*x) + BesselI(1,2*sqrt(2)*x)/sqrt(2).

Original entry on oeis.org

1, 1, 4, 6, 24, 40, 160, 280, 1120, 2016, 8064, 14784, 59136, 109824, 439296, 823680, 3294720, 6223360, 24893440, 47297536, 189190144, 361181184, 1444724736, 2769055744, 11076222976, 21300428800, 85201715200, 164317593600
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Third binomial transform (shifted right) is A047781. Hankel transform is A166232(n+1).

Crossrefs

Cf. A059304, A069720 (bisections).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+4*x-Sqrt(1-8*x^2))/(4*x*Sqrt(1-8*x^2)))); // G. C. Greubel, Aug 17 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[BesselI[0, 2*Sqrt[2]*x] + BesselI[1, 2*Sqrt[2]*x]/Sqrt[2], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 13 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2))) \\ G. C. Greubel, Aug 17 2018
    

Formula

G.f.: 1/sqrt(1-8*x^2)+(1-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)) = (1+4*x-sqrt(1-8*x^2))/(4*x*sqrt(1-8*x^2)).
a(n) = binomial(n, floor(n/2))2^floor(n/2).
a(n+1) = (1/Pi)*int(x^n*(x+4)/sqrt(8-x^2),x,-2*sqrt(2),2*sqrt(2)) if n is odd [corrected by Vaclav Kotesovec, Nov 13 2017].
Conjecture: (n+1)*a(n) +(n-1)*a(n-1) -n*a(n-2) +(2-n)*a(n-3) = 0. - R. J. Mathar, Nov 15 2011