cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098662 E.g.f. BesselI(0,2*sqrt(3)*x) + BesselI(1,2*sqrt(3)*x)/sqrt(3).

Original entry on oeis.org

1, 1, 6, 9, 54, 90, 540, 945, 5670, 10206, 61236, 112266, 673596, 1250964, 7505784, 14073345, 84440070, 159497910, 956987460, 1818276174, 10909657044, 20827527084, 124965162504, 239516561466, 1437099368796, 2763652632300
Offset: 0

Views

Author

Paul Barry, Sep 20 2004

Keywords

Comments

Fourth binomial transform is A098663.

Programs

  • Maple
    seq(binomial(n, floor(n/2))*3^floor(n/2),n=0..30); # Robert Israel, Aug 23 2019
  • Mathematica
    With[{nn=30},CoefficientList[Series[BesselI[0,2Sqrt[3]x]+ BesselI[1, 2Sqrt[3]x]/ Sqrt[3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 01 2013 *)

Formula

G.f.: 1/sqrt(1-12*x^2) + (1-sqrt(1-12*x^2))/(6*x*sqrt(1-12*x^2));
G.f.: (1 + 6*x - sqrt(1-12*x^2))/(6*x*sqrt(1-12*x^2));
a(n) = binomial(n, floor(n/2))*3^floor(n/2).
Conjecture: (n+1)*a(n) + 6(n-1)*a(n-1) - 12n*a(n-2) + 72*(2-n)*a(n-3) = 0. - R. J. Mathar, Dec 08 2011
Conjecture confirmed using the differential equation x*(6x+1)*(12*x^2-1) * g'(x) + (6*x-1)*(12*x^2+6*x+1)*g(x) + 2*x + 1 = 0 satisfied by the g.f. - Robert Israel, Aug 23 2019