cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098666 Triangle read by rows, 1<=k<=n: the n-th row contains the first n numbers after pairwise reducing all common divisors from left to right.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 1, 3, 2, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 5, 1, 7, 8, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 11, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 13, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2004

Keywords

Comments

A098667(n) = Max{m: T(n,k)=1 for 1<=k<=m<=n};
A098668(n) = T(n,n);
T(A098669(n), A098669(n)) = 1;
A008339 gives row-products.

Programs

  • Mathematica
    T[n_, n_] := X[n, n-1];
    T[n_, k_] := T[n, k] = T[n-1, k]/GCD[T[n-1, k], X[n, k-1]];
    X[n_, 0] := n;
    X[n_, k_] := X[n, k] = X[n, k-1]/GCD[T[n-1, k], X[n, k-1]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)

Formula

T(n, n)=X(n, n-1) and T(n, k)=T(n-1, k)/GCD(T(n-1, k), X(n, k-1)), where X(n, 0)=n and X(n, k)=X(n, k-1)/GCD(T(n-1, k), X(n, k-1)) for 1<=k