cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098666 Triangle read by rows, 1<=k<=n: the n-th row contains the first n numbers after pairwise reducing all common divisors from left to right.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 1, 3, 2, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 5, 1, 7, 8, 1, 1, 1, 1, 5, 1, 7, 8, 9, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 1, 1, 1, 1, 1, 1, 7, 4, 9, 1, 11, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 11, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 11, 1, 13, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 20 2004

Keywords

Comments

A098667(n) = Max{m: T(n,k)=1 for 1<=k<=m<=n};
A098668(n) = T(n,n);
T(A098669(n), A098669(n)) = 1;
A008339 gives row-products.

Programs

  • Mathematica
    T[n_, n_] := X[n, n-1];
    T[n_, k_] := T[n, k] = T[n-1, k]/GCD[T[n-1, k], X[n, k-1]];
    X[n_, 0] := n;
    X[n_, k_] := X[n, k] = X[n, k-1]/GCD[T[n-1, k], X[n, k-1]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)

Formula

T(n, n)=X(n, n-1) and T(n, k)=T(n-1, k)/GCD(T(n-1, k), X(n, k-1)), where X(n, 0)=n and X(n, k)=X(n, k-1)/GCD(T(n-1, k), X(n, k-1)) for 1<=k

A098669 Numbers of rows ending with ones in triangle A098666.

Original entry on oeis.org

1, 6, 10, 12, 20, 26, 30, 34, 38, 46, 52, 58, 60, 66, 68, 74, 78, 82, 86, 92, 102, 105, 106, 114, 116, 122, 130, 134, 136, 142, 146, 148, 156, 164, 165, 166, 172, 178, 186, 190, 194, 202, 206, 212, 218, 222, 226, 228, 230, 238, 244, 246, 252, 262, 264, 273, 274
Offset: 1

Author

Reinhard Zumkeller, Sep 20 2004

Keywords

Comments

A098668(a(n)) = 1;
a(22)=105 is the smallest odd term, 105=3*5*7.
Showing 1-2 of 2 results.