cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122928 Coefficients of a q-series inspired by Andrews and Ramanujan.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 18, 26, 37, 52, 72, 99, 134, 180, 240, 317, 416, 542, 702, 904, 1158, 1476, 1872, 2364, 2973, 3724, 4647, 5778, 7160, 8844, 10890, 13370, 16368, 19984, 24336, 29561, 35822, 43308, 52242, 62884, 75536, 90552, 108342, 129384, 154232
Offset: 0

Views

Author

Michael Somos, Sep 19 2006

Keywords

Crossrefs

Cf. A098693(n)=a(n) if n>0.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1-x^(12*k))*(1+x^(12*k-5))*(1+x^(12*k-7))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n)=if(n<1, n==0, polcoeff( sum(k=1, sqrtint(n), x^k^2/(1+x^k)* prod(i=1, k, (1+x^i)^2/(1-x^(2*i-1))/(1-x^(2*i)), 1+x*O(x^(n-k^2)))), n))}

Formula

Euler transform of period 24 sequence [ 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, ...].
Given g.f. A(x), then B(x)=A(x)^2-A(x) satisfies 0=f(B(x), B(x^2)) where f(u, v)=(1+6*u)*v*(1+2*v)-u^2.
G.f.: {Sum_{k} q^(6k^2-k) }/{Sum_{k} (-1)^k q^((3k^2-k)/2) }.
G.f.: Product_{k>0} (1-q^(12k))(1+q^(12k-5))(1+q^(12k-7))/(1-q^k).
G.f.: 1+Sum_{k>0} Prod[i=1..k, (1+q^i)^2]*(1+q^k)*q^(k^2) /{(1-q)(1-q^2)...(1-q^(2k))}.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015
Showing 1-1 of 1 results.