A098834 Palindromic Smith numbers.
4, 22, 121, 202, 454, 535, 636, 666, 1111, 1881, 3663, 7227, 7447, 9229, 10201, 17271, 22522, 24142, 28182, 33633, 38283, 45054, 45454, 46664, 47074, 50305, 51115, 51315, 54645, 55055, 55955, 72627, 81418, 82628, 83038, 83938, 90409, 95359, 96169, 164461
Offset: 1
Examples
a(3) = 121 because 121 is a Smith number as well as a palindromic number.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
Programs
-
Mathematica
d[n_] := IntegerDigits[n]; tr[n_] := Transpose[FactorInteger[n]]; Select[Range[2, 1.7*10^5], !PrimeQ[#] && Reverse[x=d[#]] == x && Total[x] == Total[d@tr[#][[1]]*tr[#][[2]], 2]&] (* Jayanta Basu, Jun 04 2013 *)
-
Python
from sympy import factorint from itertools import product def sd(n): return sum(map(int, str(n))) def smith(n): f = factorint(n) return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f) def palsto(limit): yield from range(min(limit, 9)+1) midrange = [[""], [str(i) for i in range(10)]] for digs in range(2, 10**len(str(limit))): for p in product("0123456789", repeat=digs//2): left = "".join(p) if left[0] == '0': continue for middle in midrange[digs%2]: out = int(left + middle + left[::-1]) if out > limit: return yield out print(list(filter(smith, palsto(164461)))) # Michael S. Branicky, Apr 22 2021