cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098837 Smith semiprimes.

Original entry on oeis.org

4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, 895, 913, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1507, 1633, 1642, 1678, 1795, 1822, 1858, 1894, 1903, 1921, 1966, 2038, 2155, 2173, 2182, 2218
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 10 2004

Keywords

Examples

			a(3)=58 because 58 is a Smith number as well as a semiprime.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]):
    nP:= nops(P):
    sP:= map(p -> convert(convert(p,base,10),`+`), P):
    Res:= {}:
    for i from 1 to nP do
      for j from i to nP do
        n:= P[i]*P[j];
        if n > N then break fi;
        if convert(convert(n,base,10),`+`) = sP[i]+sP[j] then
          Res:= Res union {n}
        fi
    od od:
    sort(convert(Res,list)); # Robert Israel, Aug 24 2024
  • Mathematica
    sspQ[n_]:=PrimeOmega[n]==2&&Total[Flatten[IntegerDigits/@(Table[#[[1]],#[[2]]]&/@FactorInteger[n])]]==Total[IntegerDigits[n]]; Select[Range[ 2220], sspQ] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    dsum(n)=my(s);while(n,s+=n%10;n\=10);s
    list(lim)=my(v=List(),d); forprime(p=2, sqrt(lim), d=dsum(p); forprime(q=p, lim\p, if(d+dsum(q)==dsum(p*q),listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 03 2012