A098837 Smith semiprimes.
4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, 895, 913, 922, 958, 985, 1111, 1165, 1219, 1255, 1282, 1507, 1633, 1642, 1678, 1795, 1822, 1858, 1894, 1903, 1921, 1966, 2038, 2155, 2173, 2182, 2218
Offset: 1
Examples
a(3)=58 because 58 is a Smith number as well as a semiprime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
Programs
-
Maple
N:= 10000: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P): sP:= map(p -> convert(convert(p,base,10),`+`), P): Res:= {}: for i from 1 to nP do for j from i to nP do n:= P[i]*P[j]; if n > N then break fi; if convert(convert(n,base,10),`+`) = sP[i]+sP[j] then Res:= Res union {n} fi od od: sort(convert(Res,list)); # Robert Israel, Aug 24 2024
-
Mathematica
sspQ[n_]:=PrimeOmega[n]==2&&Total[Flatten[IntegerDigits/@(Table[#[[1]],#[[2]]]&/@FactorInteger[n])]]==Total[IntegerDigits[n]]; Select[Range[ 2220], sspQ] (* Harvey P. Dale, Jul 25 2019 *)
-
PARI
dsum(n)=my(s);while(n,s+=n%10;n\=10);s list(lim)=my(v=List(),d); forprime(p=2, sqrt(lim), d=dsum(p); forprime(q=p, lim\p, if(d+dsum(q)==dsum(p*q),listput(v, p*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 03 2012