A098882 Decimal expansion of the Sum_{n>0} (A000040(n+1)-A000040(n))/(2^n), where A000040(k) gives the k-th prime number.
1, 6, 7, 4, 6, 4, 3, 9, 6, 6, 0, 1, 1, 3, 2, 8, 7, 7, 8, 9, 9, 5, 6, 7, 6, 3, 0, 9, 0, 8, 4, 0, 2, 9, 4, 1, 1, 6, 7, 7, 7, 9, 7, 5, 8, 8, 7, 7, 9, 4, 3, 7, 3, 2, 8, 3, 1, 2, 2, 0, 5, 2, 2, 0, 1, 7, 6, 3, 7, 9, 8, 6, 7, 0, 4, 4, 8, 2, 8, 3, 6, 0, 4, 1, 7, 4, 5, 4, 7, 6, 4, 5, 7, 8, 8, 0, 1, 9, 0, 1, 1, 3, 7, 5, 2
Offset: 1
Examples
1.6746439660113287789956763090840294116777975887794373283122052201763...
Links
- Eric Weisstein's World of Mathematics, Prime Number.
Programs
-
Maple
g:=N->sum((ithprime(n+1)-ithprime(n))/2^n,n=1..N); evalf[106](g(5000)); evalf[106](g(10000));
-
PARI
suminf(k=1, (prime(k+1)-prime(k))/2^k) \\ Michel Marcus, Jan 13 2016
Formula
Equals A098990 - 2. - Amiram Eldar, Nov 17 2020