A098955 Numbers with property that the last digit is the length of the number (written in base 10).
1, 12, 22, 32, 42, 52, 62, 72, 82, 92, 103, 113, 123, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 233, 243, 253, 263, 273, 283, 293, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, 493, 503
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
1,seq(seq(10*(n-1)+d,n=10^(d-2)+1..10^(d-1)),d=2..4); # Robert Israel, Aug 17 2018
-
PARI
A098955(n)=n*10-9+#Str(n-1)-(n==1) \\ M. F. Hasler, Jan 06 2013
-
Python
def a(n): s = str(n); return int(s + str(len(s) + int(n != 0))) print([a(n) for n in range(51)]) # Michael S. Branicky, Aug 04 2022
Formula
a(n) = 10(n-1)+2 = 10n-8 for n=2,...,10,
a(n) = 10(n-1)+3 = 10n-7 for n=11,...,100,
a(n) = 10(n-1)+4 = 10n-6 for n=101,...,1000, and so on,
a(n) = 10(n-1)+k+1 = 10n-(9-k) for 10^(k-1) < n <= 10^k, up to
a(n) = 10(n-1)+9 = 10n-1 for n=10^7+1,...,10^8. - M. F. Hasler, Jan 06 2013
Comments