A098957 Decimal value of the reverse binary expansion of the prime numbers.
1, 3, 5, 7, 13, 11, 17, 25, 29, 23, 31, 41, 37, 53, 61, 43, 55, 47, 97, 113, 73, 121, 101, 77, 67, 83, 115, 107, 91, 71, 127, 193, 145, 209, 169, 233, 185, 197, 229, 181, 205, 173, 253, 131, 163, 227, 203, 251, 199, 167, 151, 247, 143, 223, 257, 449, 353, 481, 337
Offset: 1
Examples
a(14) = 53 because the 14th prime is 43, or 101011 binary; reverse of 101011 is 110101, or 53 decimal.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..6542
Programs
-
Maple
a:= proc(n) local m, r; m, r:= ithprime(n), 0; while m>0 do r:= r*2+irem(m, 2, 'm') od; r end: seq(a(n), n=1..60); # Alois P. Heinz, Mar 08 2018
-
Mathematica
Table[FromDigits[Reverse[IntegerDigits[Prime[n], 2]], 2], {n, 100}] (* Alonso del Arte, Mar 05 2018 *)
-
PARI
a(n)=my(v=binary(prime(n)),s);forstep(i=#v,1,-1,s+=s+v[i]);s \\ Charles R Greathouse IV, Aug 17 2011
-
Python
from sympy import prime def A098957(n): return int(bin(prime(n))[:1:-1],2) # Chai Wah Wu, Feb 17 2022
Formula
a(n) = decimal(reverse(binary(prime(n)))) where prime(n) is the n-th prime.
Comments