A098966 Number of (k+1)-tuples of integers modulo n (x_1,...,x_k,s) such that at least one subset of the x_i sums to s mod n. In other words, n^k times the expected number of distinct subset sums mod n of k integers mod n chosen uniformly at random. Read by antidiagonals, i.e., with entries in the order (n,k)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),...
1, 1, 3, 1, 7, 5, 1, 15, 21, 7, 1, 31, 73, 43, 9, 1, 63, 233, 215, 73, 11, 1, 127, 717, 951, 497, 111, 13, 1, 255, 2173, 3971, 2865, 959, 157, 15, 1, 511, 6545, 16171, 15161, 6863, 1657, 211, 17, 1, 1023, 19665, 65167, 77369, 44391, 14521, 2631, 273, 19
Offset: 1
Examples
Table begins 1, 1, 1, 1, 1, ... 3, 7, 15, 31, 63, ... 5, 21, 73, 233, 717, ... 7, 43, 215, 951, 3971, ... 9, 73, 497, 2865, 15161, ... ...
Programs
-
Mathematica
<
Formula
a(n, 1) = 2*n - 1;
a(n, 2) = 4*n^2 - 6*n + 3;
a(n, 3) = 8*n^3 - 28*n^2 + 44*n - 23, n odd;
a(n, 3) = 8*n^3 - 28*n^2 + 44*n - 25, n even;
a(1, k) = 1;
a(2, k) = 2^(k+1) - 1;
a(3, k) = 3^(k+1) - 2*k - 2.
Comments