A098977 Triangle read by rows: counts ordered trees by number of edges and position of first edge that terminates at a vertex of outdegree 1.
1, 1, 1, 2, 2, 1, 4, 5, 3, 2, 9, 14, 9, 6, 4, 21, 42, 28, 19, 13, 9, 51, 132, 90, 62, 43, 30, 21, 127, 429, 297, 207, 145, 102, 72, 51, 323, 1430, 1001, 704, 497, 352, 250, 178, 127, 835, 4862, 3432, 2431, 1727, 1230, 878, 628, 450, 323, 2188, 16796, 11934, 8502
Offset: 1
Examples
Table begins \ k 0, 1, 2, ... n 1 | 1 2 | 1, 1 3 | 2, 2, 1 4 | 4, 5, 3, 2 5 | 9, 14, 9, 6, 4 6 | 21, 42, 28, 19, 13, 9 7 | 51, 132, 90, 62, 43, 30, 21 8 |127, 429, 297, 207, 145, 102, 72, 51 T(4,2)=3 counts the following ordered trees (drawn down from root). ..|..../\..../|\.. ./.\....|.....|... .|......|.........
Programs
-
Mathematica
Clear[v] MotzkinNumber[n_]/;IntegerQ[n] && n>=0 := If[0<=n<=1, 1, Module[{x = 1, y = 1}, Do[temp = ((2*i + 1)*y + 3*(i - 1)*x)/(i + 2); x = y; y = temp, {i, 2, n}]; y]]; v[n_, 0]/; n>=1 := MotzkinNumber[n-1]; v[n_, k_]/; k>=n := 0; v[n_, k_]/; n>=2 && k==n-1 := MotzkinNumber[n-2]; v[n_, k_]/; n>=3 && 1<=k<=n-2 := v[n, k] = v[n, k+1]+v[n-1, k]; TableForm[Table[v[n, k], {n, 10}, {k, 0, n-1}]]
Formula
G.f. for column k=0 is (1 - z - (1-2*z-3*z^2)^(1/2))/(2*z^2) = Sum_{n>=1}T(n, 0)z^n. G.f. for columns k>=1 is (t*(1 - (1 - 4*z)^(1/2) - 2*z))/ (1 - t + t*(1 - 4*z)^(1/2) + t*z + (1 - 2*t*z - 3*t^2*z^2)^(1/2)) = Sum_{n>=2, 1<=k<=n-1}T(n, k)z^n*t^k.
Comments