cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098985 Denominators in series expansion of log( Sum_{m=-oo,oo} q^(m^2) ).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 5, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 1, 11, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 3, 49, 25, 17, 13, 53, 27, 55, 7, 57, 29, 59, 5, 61, 31, 63, 1, 65, 11, 67, 17, 23, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, Oct 24 2004

Keywords

Comments

For n>0, a(n) is the denominator of Sum_{odd d|n} 1/d. See Sumit Kumar Jha link. - Michel Marcus, Jul 21 2020

Examples

			2*q-2*q^2+8/3*q^3-2*q^4+12/5*q^5-8/3*q^6+16/7*q^7-2*q^8+26/9*q^9-...
		

Crossrefs

Cf. A336113 (numerators).

Programs

  • Maple
    A098985_list := proc(n::integer)
        local q,m,nsq ;
        nsq := floor(sqrt(n)) ;
        add(q^(m^2),m=-nsq-1..nsq+1) ;
        log(%) ;
        taylor(%,q=0,n+1) ;
        [seq( denom(coeftayl(%,q=0,i)) ,i=1..n) ] ;
    end proc:
    A098985_list(200) ; # R. J. Mathar, Jul 16 2020
    A336114 := proc(n::integer)
        local a ;
        for d in numtheory[divisors](n) do
            if type(d,'odd') then
                a := a+1/d ;
            end if;
        end do;
        denom(a) ;
    end proc:
    seq(A336114(n),n=1..70) ; # R. J. Mathar, Jul 16 2020
  • Mathematica
    Denominator[CoefficientList[Series[Log[Sum[q^m^2, {m, -Infinity, Infinity}]], {q, 0, 79}], q]] (* L. Edson Jeffery, Jul 14 2014 *)
    a[n_] := Denominator @ DivisorSum[n, 1/# &, OddQ[#] &]; Array[a, 100] (* Amiram Eldar, Jul 09 2020 *)
  • PARI
    lista(nn) = {my(k = sqrtint(nn), s = sum(m=-k-1, k+1, x^(m^2)) + O(x^nn)); apply(x->denominator(x), Vec(log(s)));} \\ Michel Marcus, Jul 17 2020
    
  • PARI
    a(n) = if (n==0, 1, denominator(sumdiv(n, d, if (d%2, 1/d)))); \\ Michel Marcus, Jul 21 2020; corrected Jun 13 2022

A098986 Numerators (divided by 2) in series expansion of log( Sum_{m=-oo,oo} q^(m^2) ).

Original entry on oeis.org

0, 1, -1, 4, -1, 6, -4, 8, -1, 13, -6, 12, -4, 14, -8, 8, -1, 18, -13, 20, -6, 32, -12, 24, -4, 31, -14, 40, -8, 30, -8, 32, -1, 16, -18, 48, -13, 38, -20, 56, -6, 42, -32, 44, -12, 26, -24, 48, -4, 57, -31, 24, -14, 54, -40, 72, -8, 80, -30, 60, -8, 62, -32, 104, -1, 84, -16, 68, -18, 32, -48, 72, -13, 74, -38, 124, -20, 96
Offset: 0

Views

Author

N. J. A. Sloane, Oct 24 2004

Keywords

Examples

			2*q-2*q^2+8/3*q^3-2*q^4+12/5*q^5-8/3*q^6+16/7*q^7-2*q^8+26/9*q^9-...
		

Crossrefs

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Log[Sum[q^m^2, {m, -Infinity, Infinity}]], {q, 0, 77}], q]]/2 (* L. Edson Jeffery, Jul 14 2014 *)
Showing 1-2 of 2 results.