A099005 Numbers k such that 4*10^k + 6*R_k - 3 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
1, 2, 3, 4, 6, 7, 8, 12, 23, 59, 75, 144, 204, 268, 760, 1216, 1430, 1506, 1509, 2804, 2924, 3201, 3305, 5753, 9268, 11279, 19677, 23414, 28627, 31362, 42299, 49119, 63747, 81767, 111443, 263720, 264791
Offset: 1
Examples
For n = 1, 2, 3, 4, 6, 7, 8 are members since 43, 463, 4663, 46663, 4666663, 46666663 and 466666663 are primes.
Links
Crossrefs
Cf. A101730.
Programs
-
Mathematica
Do[ If[ PrimeQ[(14*10^n - 11)/3], Print[n]], {n, 0, 10000}] (* Robert G. Wilson v, Dec 17 2004 *)
Formula
a(n) = A101730(n) + 1.
Extensions
a(15) - a(21) from Robert G. Wilson v, Dec 22 2004
a(22) - a(25) from Robert G. Wilson v, Jan 17 2005
a(26)-a(27) from Kamada link by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(28)-a(29) from Kamada data by Robert Price, Dec 08 2010
a(30)-a(32) from Erik Branger, May 01 2013, submitted by Ray Chandler, Aug 16 2013
a(33)-a(34) from Kamada data by Robert Price, Mar 30 2015
a(35)-a(37) from Robert Price, May 31 2023
Comments