A099020 Euler-Seidel matrix T(k,n) with start sequence A001147, read by antidiagonals.
1, 1, 0, 2, 1, 1, 4, 2, 1, 0, 10, 6, 4, 3, 3, 26, 16, 10, 6, 3, 0, 76, 50, 34, 24, 18, 15, 15, 232, 156, 106, 72, 48, 30, 15, 0, 764, 532, 376, 270, 198, 150, 120, 105, 105, 2620, 1856, 1324, 948, 678, 480, 330, 210, 105, 0, 9496, 6876, 5020, 3696, 2748, 2070, 1590, 1260, 1050, 945, 945
Offset: 0
Examples
1, 0, 1, 0, 3, 0, 15, ... 1, 1, 1, 3, 3, 15, 15, ... 2, 2, 4, 6, 18, 30, 120, ... 4, 6, 10, 24, 48, 150, 330, ... 10, 16, 34, 72, 198, 480, 1590, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
Programs
-
Maple
T:= proc(k, n) option remember; `if`(k=0, `if`(irem(n, 2)=0, doublefactorial(n-1), 0), T(k-1, n) +T(k-1, n+1)) end: seq(seq(T(d-n, n), n=0..d), d=0..14); # Alois P. Heinz, Oct 14 2012
-
Mathematica
t[0, n_?EvenQ] := (n-1)!!; t[0, n_?OddQ] := 0; t[k_, n_] := t[k, n] = t[k-1, n] + t[k-1, n+1]; Table[t[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)
Formula
Recurrence: T(0, 2n) = (2n-1)!!, T(0, 2n+1) = 0, T(k, n) = T(k-1, n) + T(k-1, n+1).
Comments