cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099021 Main diagonal of array in A099020.

Original entry on oeis.org

1, 1, 4, 24, 198, 2070, 26160, 387240, 6565020, 125341020, 2659925520, 62089917120, 1580632348680, 43571319671880, 1292731109429760, 41068078953501600, 1390717740470058000, 50003952605673066000, 1902359109096675028800, 76341746199227491382400
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

Diagonal of Euler-Seidel matrix with start sequence A001147.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<3, [1, 1, 4][n+1],
          (4*n-3)*a(n-1) -(n-1)*(4*n-7)*a(n-2) -(n-2)*(n-1)*a(n-3))
        end:
    seq (a(n), n=0..20);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x^2/(2-4*x))/Sqrt[1-2*x],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)

Formula

a(n) = (1/(sqrt(2*Pi)))*Int(exp(-x^2/2)*(x(1+x))^n,x,-infinity,infinity). - Paul Barry, Apr 19 2010
Contribution from Vaclav Kotesovec, Oct 14 2012: (Start)
E.g.f.: exp(x^2/(2-4*x))/sqrt(1-2*x).
Recurrence: a(n) = (4*n-3)*a(n-1) - (n-1)*(4*n-7)*a(n-2) - (n-2)*(n-1)*a(n-3).
a(n) ~ 2^(n-1/2)*exp(sqrt(n/2)-n-3/16)*n^n.
(End)