A099024 a(n) = A033466(5n+2). Values of A033466(n) that differ from A058031(n+1)+1.
10, 650, 986, 18850, 51410, 114610, 223450, 79186, 653050, 1018810, 1520210, 2187250, 610586, 4153250, 5527210, 7216810, 9267050, 2345186, 14644450, 18076610, 22079410, 26712850, 6407986, 38126650, 45042010, 52858010
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
Crossrefs
Cf. A096431 (numerators).
Programs
-
Magma
A099024:= func< n | Denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) >; [A099024(n): n in [0..40]]; // G. C. Greubel, Oct 14 2024
-
Mathematica
Table[Denominator[(2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2))], {n,0,40}] (* G. C. Greubel, Oct 14 2024 *)
-
SageMath
def A099024(n): return denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) [A099024(n) for n in range(41)] # G. C. Greubel, Oct 14 2024
Formula
G.f.: P(x)/(1-x^5)^5, where P(x) is a 24-degree polynomial.
a(n) = denominators of (2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2)). - G. C. Greubel, Oct 14 2024