A099027 a(n) = Sum_{k=0..n} n-k AND NOT k.
0, 1, 2, 6, 6, 11, 16, 28, 24, 29, 34, 50, 54, 71, 88, 120, 104, 105, 106, 126, 126, 147, 168, 212, 208, 229, 250, 298, 318, 367, 416, 496, 448, 433, 418, 438, 422, 443, 464, 524, 504, 525, 546, 610, 630, 695, 760, 872, 840, 857, 874, 942, 958, 1027, 1096
Offset: 0
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 0..8191
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 39.
Programs
-
Mathematica
(* Using definition *) Table[Sum[BitAnd[n - k, BitNot[k]], {k, 0, n}], {n, 0, 100}] (* Using recurrence -- faster *) a[0] = 0; a[n_] := a[n] = If[OddQ[n], 4*a[(n-1)/2] + (n-1)/2 + 1, 2*(a[n/2] + a[n/2-1])]; Table[a[n], {n, 0, 100}] (* Paolo Xausa, Sep 30 2024 *)
-
PARI
a(n) = sum(k=0, n, bitand(n-k, bitneg(k))); \\ Michel Marcus, Oct 30 2022
Formula
Recurrence: a(0) = 0, a(2n) = 2a(n) + 2a(n-1), a(2n+1) = 4a(n) + n+1. [corrected by Peter J. Taylor, May 30 2024]
Comments