cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099037 Triangle of diagonals of symmetric Krawtchouk matrices.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 3, -3, -1, 1, 8, -12, 8, 1, 1, 15, -20, 20, -15, -1, 1, 24, -15, 0, -15, 24, 1, 1, 35, 21, -105, 105, -21, -35, -1, 1, 48, 112, -336, 420, -336, 112, 48, 1, 1, 63, 288, -672, 756, -756, 672, -288, -63, -1, 1, 80, 585, -960, 420, 0, 420, -960, 585, 80, 1, 1, 99, 1045, -825, -1980, 4620, -4620, 1980, 825, -1045, -99, -1
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums have e.g.f. BesselI(0,2*x) (A000984 with interpolated zeros).
Diagonal sums are A099038.

Examples

			Triangle begins as:
1.
1, -1.
1,  0,  1.
1,  3, -3,  1.
1,  8, -12, 8, 1. ...
		

References

  • P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[k <= n, Binomial[n, k]*Sum[(-1)^j*Binomial[k, j]*Binomial[n - k, k - j], {j, 0, n}], 0]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    {T(n, k) = binomial(n, k)*sum(j=0,n, (-1)^j*binomial(k, j)*binomial(n-k, k-j))};
    for(n=0,20, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017

Formula

Triangle T(n, k) = if(k<=n, C(n, k)*Sum_{i=0..n} (-1)^i*C(k, i)C(n-k, k-i), 0).
Triangle T(n, k) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,k)*C(k,j-k) = C(n,k)*A098593(n,k).