cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099038 Diagonal sums of a Krawtchouk triangle.

Original entry on oeis.org

1, 1, 0, 1, 5, 6, 3, 13, 42, 55, 55, 162, 413, 591, 810, 2001, 4451, 6900, 11091, 24795, 51030, 84337, 147253, 309666, 610695, 1058041, 1928646, 3903175, 7528741, 13480380, 25126093, 49640405, 94739568, 173440389, 326974495, 636424008
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Diagonal sums of A099037.

Crossrefs

Cf. A077948.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]*Sum[(-1)^i*Binomial[k, i]*Binomial[n - 2*k, k - i], {i, 0, n}], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    for(n=0,30, print1(sum(k=0,floor(n/2), binomial(n-k,k)*sum(i=0,n,(-1)^i*binomial(k,i)*binomial(n-2*k,k-i))), ", ")) \\ G. C. Greubel, Dec 31 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*Sum_{i=0..n} (-1)^i*C(k, i) * C(n-2k, k-i).
Conjecture: n*a(n) -n*a(n-1) +n*a(n-2) +3*(-n+1)*a(n-3) +(-5*n+13)*a(n-4) +(n-3)*a(n-5)=0. - R. J. Mathar, Dec 21 2014