A099067
Numbers n such that n=P(d_1*d_2*...*d_k) + P(d_1+d_2+...+d_k) where d_1 d_2 ... d_k is the decimal expansion of n and P(i) is the i-th prime.
Original entry on oeis.org
82, 92, 194, 149868
Offset: 1
149868 is in the sequence because 149868=149717+151=P(1*4*9*8*6*8)+P(1+4+9+8+6+8).
-
Do[h=IntegerDigits[n];l=Length[h];If[ !MemberQ[h, 0]&& n==Prime[Product[h[[k]], {k, l}]]+Prime[Sum[h[[k]], {k, l}]], Print[n]], {n, 25000000}]
A099069
Numbers n such that n = prime(d_1*d_2*...*d_k) - phi(d_1 + d_2 + ... + d_k) where d_1 d_2 ... d_k is the decimal expansion of n.
Original entry on oeis.org
1, 2, 3, 19, 35497
Offset: 1
35497 is in the sequence because 35497 = prime(3*5*4*9*7) - phi(3 + 5 + 4 + 9 + 7).
- C. Rivera, Puzzle 279The Prime Puzzles & Problems connection.
-
Do[h=IntegerDigits[n];l=Length[h];If[ !MemberQ[h, 0]&&n==Prime[Product[h[[k]], {k, l}]]-EulerPhi[Sum[h[[k]], {k, l}]], Print[n]], {n, 6000000}]
Showing 1-2 of 2 results.
Comments