A099096 Riordan array (1,2-x).
1, 0, 2, 0, -1, 4, 0, 0, -4, 8, 0, 0, 1, -12, 16, 0, 0, 0, 6, -32, 32, 0, 0, 0, -1, 24, -80, 64, 0, 0, 0, 0, -8, 80, -192, 128, 0, 0, 0, 0, 1, -40, 240, -448, 256, 0, 0, 0, 0, 0, 10, -160, 672, -1024, 512, 0, 0, 0, 0, 0, -1, 60, -560, 1792, -2304, 1024, 0, 0, 0, 0, 0
Offset: 0
Examples
Rows begin 1; 0, 2; 0, -1, 4; 0, 0, -4, 8; 0, 0, 1, -12, 16; ...
Crossrefs
Cf. A099089.
Programs
-
PARI
/* Matrix power T^m formula: [T^m](n,k) = */ {T(n,k,m=1)=polcoeff((1 - (1-x +x*O(x^n))^(2^m) )^k,n)} \\ Paul D. Hanna, Nov 15 2007
Formula
Number triangle T(n, k) = binomial(k, n-k)*2^k*(-1/2)^(n-k); columns have g.f. (2x-x^2)^k.
G.f. of column k of matrix power T^m = (1 - (1-x)^(2^m))^k for k >= 0, when including the leading zeros that appear above the diagonal. - Paul D. Hanna, Nov 15 2007
T(n,k) = 2*T(n-1,k-1) - T(n-2,k-1), with T(0,0)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 25 2013
G.f.: 1/(1-2*x*y+x^2*y). - R. J. Mathar, Aug 12 2015
Comments