cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099097 Riordan array (1, 3+x).

Original entry on oeis.org

1, 0, 3, 0, 1, 9, 0, 0, 6, 27, 0, 0, 1, 27, 81, 0, 0, 0, 9, 108, 243, 0, 0, 0, 1, 54, 405, 729, 0, 0, 0, 0, 12, 270, 1458, 2187, 0, 0, 0, 0, 1, 90, 1215, 5103, 6561, 0, 0, 0, 0, 0, 15, 540, 5103, 17496, 19683, 0, 0, 0, 0, 0, 1, 135, 2835, 20412, 59049, 59049, 0, 0, 0, 0, 0, 0, 18, 945, 13608, 78732, 196830, 177147
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008

Examples

			Triangle begins:
  1;
  0, 3;
  0, 1, 9;
  0, 0, 6, 27;
  0, 0, 1, 27,  81;
  0, 0, 0,  9, 108, 243;
  ...
		

Crossrefs

Cf. A027465.
Diagonals are of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).

Programs

  • Mathematica
    Table[3^(2*k-n)*Binomial[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 19 2021 *)
  • Sage
    flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021

Formula

Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
G.f.: 1/(1 - 3*y*x - y*x^2). - Philippe Deléham, Nov 21 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A006190(n+1), A135030(n+1), A181353(n+1) for x = 0,1,2,3 respectively. - Philippe Deléham, Nov 21 2011