A099138 a(n) = 6^(n-1)*J(n), where J(n) = A001045(n).
0, 1, 6, 108, 1080, 14256, 163296, 2006208, 23794560, 287214336, 3436494336, 41298398208, 495217981440, 5944792559616, 71324450021376, 855971764420608, 10271190988062720, 123257112966660096, 1479068428940476416
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..925
- Index entries for linear recurrences with constant coefficients, signature (6,72).
Programs
-
Magma
[(12^n - (-6)^n)/18: n in [0..40]]; // G. C. Greubel, Feb 18 2023
-
Mathematica
LinearRecurrence[{6,72}, {0,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
-
SageMath
[(12^n - (-6)^n)/18 for n in range(41)] # G. C. Greubel, Feb 18 2023
Formula
G.f.: x/((1+6*x)*(1-12*x)).
a(n) = 6^(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k) * 2^k.
a(n) = (12^n - (-6)^n)/18.
a(n) = 6^(n-1)*A001045(n).
E.g.f.: (1/18)*(exp(12*x) - exp(-6*x)). - G. C. Greubel, Feb 18 2023
Comments