cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099138 a(n) = 6^(n-1)*J(n), where J(n) = A001045(n).

Original entry on oeis.org

0, 1, 6, 108, 1080, 14256, 163296, 2006208, 23794560, 287214336, 3436494336, 41298398208, 495217981440, 5944792559616, 71324450021376, 855971764420608, 10271190988062720, 123257112966660096, 1479068428940476416
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

In general k^(n-1)*J(n), where J(n) = A001045(n), is given by ((2*k)^n - (-k)^n)/(3*k) with g.f. x/((1+k*x)*(1-2*k*x)).

Crossrefs

Programs

  • Magma
    [(12^n - (-6)^n)/18: n in [0..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{6,72}, {0,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    [(12^n - (-6)^n)/18 for n in range(41)] # G. C. Greubel, Feb 18 2023

Formula

G.f.: x/((1+6*x)*(1-12*x)).
a(n) = 6^(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k) * 2^k.
a(n) = (12^n - (-6)^n)/18.
a(n) = 6^(n-1)*A001045(n).
E.g.f.: (1/18)*(exp(12*x) - exp(-6*x)). - G. C. Greubel, Feb 18 2023