A099141 a(n) = 5^n * T(n,7/5) where T is the Chebyshev polynomial of the first kind.
1, 7, 73, 847, 10033, 119287, 1419193, 16886527, 200931553, 2390878567, 28449011113, 338514191407, 4027973401873, 47928772841047, 570303484727833, 6786029465163487, 80746825394092993, 960804818888214727
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-25).
Programs
-
Mathematica
LinearRecurrence[{14,-25},{1,7},30] (* Harvey P. Dale, Dec 26 2014 *)
Formula
G.f.: (1-7*x)/(1-14*x+25*x^2);
e.g.f.: exp(7*x)*cosh(2*sqrt(6)*x);
a(n) = 5^n * T(n, 7/5) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 6^k * binomial(2n, 2k);
a(n) = (1+sqrt(6))^(2n)/2 + (1-sqrt(6))^(2n)/2.
a(0)=1, a(1)=7, a(n) = 14*a(n-1) - 25*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
Comments