cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099159 a(n) = (L(n-2)+2*3^n)/5.

Original entry on oeis.org

1, 1, 4, 11, 33, 98, 293, 877, 2628, 7879, 23629, 70874, 212601, 637769, 1913252, 5739667, 17218857, 51656338, 154968637, 464905301, 1394714916, 4184143151, 12552426869, 37657276426, 112971822513, 338915456593, 1016746352068, 3050239027547, 9150717036273
Offset: 0

Views

Author

Paul Barry, Oct 01 2004

Keywords

Comments

Binomial transform of A052964.

Crossrefs

Programs

  • Mathematica
    A099159[n_] := (LucasL[n-2] + 2*3^n)/5; Array[A099159, 30, 0] (* or *)
    LinearRecurrence[{4, -2, -3}, {1, 1, 4}, 30] (* Paolo Xausa, Jun 20 2024 *)

Formula

G.f.: (1-3*x+2*x^2)/((1-3*x)*(1-x-x^2)).
a(n) = ((1+sqrt(5))/2)^n*(3/10-sqrt(5)/10) + ((1-sqrt(5))/2)^n*(3/10+sqrt(5)/10) + 3^n*2/5.
a(n) = Sum_{k=0..n} (-2*0^k-Fib(k-4)) * 3^(n-k).
a(n) = A098703(n+1) - A098703(n). - Ross La Haye, Sep 11 2005