cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099177 a(n)=2a(n-1)+4a(n-2)-4a(n-3)-4a(n-4).

Original entry on oeis.org

0, 1, 2, 8, 20, 60, 160, 448, 1216, 3344, 9120, 24960, 68160, 186304, 508928, 1390592, 3799040, 10379520, 28357120, 77473792, 211661824, 578272256, 1579868160, 4316282880, 11792302080, 32217174016, 88018952192, 240472260608
Offset: 0

Views

Author

Paul Barry, Oct 02 2004

Keywords

Comments

Form the 6 node graph with matrix A=[1,1,1,1,0,0; 1,1,0,0,1,1; 1,0,0,0,0,0; 1,0,0,0,0,0; 0,1,0,0,0,0; 0,1,0,0,0,0]. Then A099177 counts walks of length n between the degree 5 vertices.

Crossrefs

Cf. A099176.

Programs

  • Mathematica
    LinearRecurrence[{2,4,-4,-4},{0,1,2,8},30] (* Harvey P. Dale, Feb 12 2023 *)

Formula

G.f.: x/((1-2x^2)(1-2x-2x^2)); a(n)=(3+sqrt(3))(1+sqrt(3))^n/12+(3-sqrt(3))(1-sqrt(3))^n/12-2^((n-4)/2)(1+(-1)^n); a(n)=A002605(n)/2-2^((n-4)/2)(1+(-1)^n).
a(n)=sum{k=0..floor((n+1)/2), binomial(n-k+1, k-1)2^(n-k)} - Paul Barry, Oct 23 2004
Showing 1-1 of 1 results.