A099226 Numbers that can be represented as both a^x+x and b^y-y, for some a, b, x, y > 1.
27, 248, 2194, 32763
Offset: 1
Examples
27 = 25^2+2 = 32^5-5, 248 = 7^3+3 = 2^8-8, 2194 = 3^7+7 = 13^3-3 and 32763 = 181^2+2 = 8^5-5.
Crossrefs
Cf. A074981 (n such that there is no solution to Pillai's equation).
Programs
-
Mathematica
nLim=40000; lst1={}; Do[k=2; While[n=m^k-k; n<=nLim, AppendTo[lst1, n]; k++ ], {m, 2, Sqrt[nLim]}]; lst2={}; Do[k=2; While[n=m^k+k; n<=nLim, AppendTo[lst2, n]; k++ ], {m, 2, Sqrt[nLim]}]; Intersection[lst1, lst2]
Comments